THE MARTIAN PROPHECIES: Earth’s Conquest Of The Red Planet

12 Mar

Mars Frontier series

Early Mars terraforming site inspected by an American first-generation colonist.

Essay and multimedia content by: David Anthony Johanson

If you would like to see this essay in an alternative graphic format please visit our Science Tech Tablet site at:  http://BigPictureOne.wordpress.com/

Fu-tur-ism                                                                                                                               noun

1. Concern with events and trends of the future or which anticipate the future.

Any sufficiently advanced technology is indistinguishable from magic. — Arthur C. Clarke

.

How Earth Conquered Mars And Successfully Colonized The Red Planet

March 2054

Mars Frontier series

.

.

.

The Evolutionary Mastery Of Mars

In a forty-year period, the march towards making Mars inhabitable, astonished even the most optimistic futurist. A sequence of technological events and economic opportunities converged seamlessly to allow the safe and efficient journey to the fourth planet from our Sun. Now human life has sustained itself and is beginning to thrive on Martian soil.

On Earth, unstable global weather patterns, along with a sequence of catastrophic meteorite strikes hastened humanity’s effort to reach for the red planet. Of all the planets in our solar system — Mars has proven the best hope for life taking hold.

Collaboration from the World’s nations, aligned rapidly to expand the colonies beyond Earth’s low-orbit. These outposts are in a stable formation at Sun-Earth Lagrangian Points:  L2, L4,  L5 and beyond. The various sites are used to support manufacturing, exploration and asteroid mining operations. Once established, they became “stepping-stones” towards Mars. Distant supply and launch stations are currently expanding at Sun-Mars Lagrangian points, circulating Mars.

mars-map

Triumph Through Large Scale Asteroid Mining 

After the first three decades of daring space exploration in the late Twentieth Century, momentum was lost from lack of compelling mission. Chemical propulsion system limitations and lack of aerospace manufacturing beyond Earth’s orbit, slowed space exploration’s progress. Major superpowers lacked funding and political will to achieve great advances beyond low Earth Orbit.

As the Twenty-First Century progressed, collaboration of prime aerospace companies Boeing and Space X, developed, hybrid launch vehicles to accelerate humanity’s expanded presence in space. Private commercial ventures determined a great potential existed for mining valuable resources from near Earth asteroids and the Moon. The first company to successfully begin asteroid mining were Planetary Resources, with funding provided by wealthy technology luminaries.

Mars Frontier series

 

.

.

.

.

.

.

.

.

Mars Frontier series

Three-D Printing In Space – A Bridge To Infinity 

Early in the Twenty-first Century, new advanced technological tools were developed for flexible and efficient manufacturing. After revolutionary 3-D printing operations took hold in space, opportunities expanded rapidly to develop massive infrastructure beyond Earth’s orbit. Three-D printing devices made prefabrication of immense living and working sites possible on the Moon and various stationary points well beyond Earth’s gravitational influence.

.

Three-D printing for manufacturing space-station stepping-stones

.

Beyond Earth’s Orbit — Islands In Space

As the population of human enterprises rapidly expanded into deep space, exploration of Mars became practical and irresistible.

Using a spectrum of cybernetic applications, including artificial intelligences (AI), atomically precise manufacturing (APM) and 3-D printing provided cost-effective infrastructure manufacturing  to expand beyond Earth’s low orbit. The network of space station developments offers a growing population of skilled aerospace workers — dynamic living and work environments.

Molecular nanotechnology (MNT) produces an endless variety of manufactured goods for the inhabitants of interplanetary space. As the initial space stations quickly expanded and connected to one another, they became known as “Island Stations.” Adopting interplanetary codes for infrastructure support commonality is maintained for all inhabitants and guest visits by the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).

A network of stepping stone islands, which initially were used to extend the reach of asteroid mining operations from stable points beyond a low Earth orbit, is essential for colonizing Mars.

Mars Frontier series

Approximately 10 million miles from Earth, a network of station islands is positioned as a gateway point to Mars. These station networks are mutually protected from solar storms/flares by their own artificial magnetosphere. Earth (blue dot) and its moon can be seen near the upper-center part of the photo.

Mars Frontier series

Revolution — Electro Magnetic Propulsion And Magnetic Shield Protective  Fields 

Revolutionary, electromagnetic propulsion systems, using super-cooled, conducting magnets and magnetoplasmadynamic (MPD) were developed for vastly superior performance over conventional chemical rockets. The time required to reach destinations such as Mars has been reduced significantly, by a factor of months to weeks. Initial funding from NASA and ESA, created a collaboration between Boeing, SpaceX and Virgin Galatic to produce these hybrid propulsion space craft.

The greatest threat to human space travel and colonization is from solar winds of magnetized plasma carrying protons and alpha particles, which can Mars Frontier seriesbreak down DNA and lead to cancer. A magnetic coil shield system allows space craft protection from most harmful radiation by creating its own magnetosphere. This shielding system harnesses for universal applications to protect space station populations, inner planetary travelers and Martian colonies.

A high energy accelerator was developed on Mars using spectrums of solar energy to recreate a magnetic field to help produce a sustainable atmosphere.

Mars Frontier series

   An electromagnetic propulsion cargo ship as it begins entering a high energy state.

Mars Frontier series

 

Electromagnetic propulsion “asteroid lifter” encounters solar wind storm.   

star_lifter_bpp_a2054

solar_system_jpeg

Illustration courtesy of NASA.

evo_bio_424

Genetic Modification Through Astrobiology Provides Essential Benefits For Human Space Travelers

Evolutionary biology has provided advantages to meet the challenges of human travel into deep space.

The first generation of genetically modified humans was created to  limit the effects and risk from extended space travel. Microchip circuitry imbedded into tissue, gave humans expanded capabilities to assure space survivability, productivity, and flight operations. To combat muscle degradation from zero gravity-exposure, contractile protein levels increase in muscle tissue.

.

Settlements On The Red Planet And Stages Of Terraforming

The early years of colonization, required to live beneath Mar’s regolith (soil) to afford protection from life threatening solar winds. After the first colonies developed their own localized magnetosphere, they encapsulated ever-expanding environments within aerodynamic, translucent domes — creating an atmospheric oasis, which are shielded from dust storms and subzero temperatures. Now quality of life on Mars includes a confined, Earth like atmosphere with protection from harmful Solar radiation.

Mars Frontier series

Massive mirrors are fixed in orbit above Mars for reflecting warmth back onto its surface, to provide a more temperate climate. Reflected light directed at Martian polar ice caps and its Carbon dioxide atmosphere of CO2 helps to keep thermal energy near the planet’s surface. As a result, a thermal runaway greenhouse effect is created to help build a thicker atmosphere. Directing asteroids with high concentrations of ammonia to impact nitrate beds on Mars, releases high volumes of oxygen and nitrogen. These controlled asteroid strikes are providing substantial positive results.

Nanotechnology is now employed on the surface of Mars and is dramatically altering landscape regions within various craters. Genetically modified plant forms are successfully taking hold and surviving some test environments. In conclusion, all of these achievements are creating a more Earth like climate, for efforts to terraform Mars.

.

Earth’s Sustainable Community On Mars

Self replicating machines using APM manufacturing allow infrastructure to develop at astonishing rates on the red planet. New scientific, engineering and mining communities are establishing themselves rapidly as they descend from stations above Mars.

Mars Frontier series

The form of governance adopted by the colonies on Mars is based on a nonpolitical and international form of cooperation.  Asteroid mining and APM manufacturing are the largest industries associated with the Mars colonies.

Mars Frontier series                

   .      

 Martian colonists celebration party for “Pioneer Days.” Martian sunset seen in the background, behind a massive protective atmospheric shield.

.

Fossil Bed Enigma Reveals We May Never Have Been Alone

Found only days ago in the Antoniadi Crater region, is evidence of a fossil and what appears to be human like footprints. Although this discovery may revolutionize our view of the red planet — we must wait for the samples to arrive on Earth to confirm what could be one of the greatest discoveries of all time.

Mars Frontier series

                                                                       Discovery at a Martian archeological dig site — “we have never been alone.”

Mars Frontier series

.

.

.

.

.

.

Mars Frontier series

Music soundtrack for the Martian Prophecies — Powered by Boards of Canada (you can open another web browser if you would like have the following music play while viewing this essay)

Solar System & Planetary travel music — http://www.youtube.com/watch?v=3l_IMOweP0E

Martian pioneers’ celebratory music — http://www.youtube.com/watch?v=PYEZueAelKc   and or    http://www.youtube.com/watch?v=n1qKLKRRIoU

Music for terraforming Mars to —  http://www.youtube.com/watch?v=qthHlLyvplg

Facts Concerning Mars

One day on Mars = 24 hours 37 minutes and 22 seconds.

One year on Mars = 686.98 Earth days.

Average distance from Earth to Mars = 225 million kilometers.

The minimum distance from Earth to Mars = 54. million km.

The farthest distance from Earth to Mars = 401 million km.

Warmest temperature of Mars — 70 degrees F (20 degrees C) near the equator

Origin of the name Mars = Ancient Roman god of war and agricultural guardian

The calendar Month named after Mars = March

Links to Learn More About Mars

http://www.wired.com/wiredscience/2010/01/gallery-mars/

http://cbhd.org/content/whose-image-remaking-humanity-through-cybernetics-and-nanotechnology

http://www.jpl.nasa.gov/missions/

http://www.nasa.gov/vision/space/travelinginspace/future_propulsion.html

http://physicsworld.com/cws/article/news/2008/nov/06/magnetic-shield-could-protect-spacecraft

http://www.slate.com/blogs/quora/2013/09/12/outer_space_can_we_make_mars_or_venus_habitable.html

http://en.wikipedia.org/wiki/List_of_private_spaceflight_companies

http://www.forbes.com/sites/brucedorminey/2013/05/29/can-mars-be-terraformed-nasas-maven-mission-could-provide-answers/

http://en.wikipedia.org/wiki/Lagrangian_point

http://www.applieddefense.com/wp-content/uploads/2012/12/2001-Carrico-Sun-Mars_Libration_Points_And_Mars_Mission_Simulations.pdf

http://www.thespacereview.com/article/2305/1

An Introduction Guide to Steampunk

2 Oct
Multimedia eLearning essay by: David Anthony Johanson  © All Rights
Steampunk is a wonderfully curious subculture — percolating with creative optimism, healthy playfulness — an inventive postmodern science fiction genre, which blends Victorian era, 19th Century alternative history with contemporary technology.
Goggles are a popular accessory for Steampunk practitioners.
Goggles are a popular accessory for Steampunk practitioners
A sub-genre of science fiction — Steampunk appears as if caught in some strange time warp. The practitioners of this loosely knit community of post-industrialist feature Victorian era clothing along with accessories such as goggles, intricate antique jewelry incorporating watch gears and a wide spectrum of retro-futuristic attachments.
Steampunk has remained under the radar of mainstream media, which is surprising since it’s one of the fastest growing cultural trends in recent memory! Now reaching the tipping point, this curious lifestyle movement is beginning to influence mainstream media, major retail and fashion labels.
Hand crafted, often one of a kind Steampunk jewelry is sold by vendors at the festival.
Hand crafted, often one of a kind Steampunk jewelry is sold by vendors at the festival.
Hand crafted, repurposed products, which uses wood, glass and metal (especially brass) are associated with the Steampunk movement. Manufactured plastic materials are rejected and viewed with contempt at Steampunk social gatherings.
Steampunk fashion or clothing is an eclectic mashup of Victorian era and Art Nouveau styles.

Steampunk fashion or clothing is an eclectic mashup of Victorian era and Art Nouveau styles.

Steam_punk_Fairhaven_BPP_2013_w 1

 

Steampunk Etymology   

Steam_punk_Fairhaven_BPP_2013_w 10
Although SP is a postmodern hybrid genre, Victorian era writers associated with its original inspiration are: H G Wells, Jules Verne and Mary Shelly. These 19th Century, vanguard novelist inspired future generations of science fiction writers, which throughout the 20th Century created new genres of their own.
Steampunk is not directly associated with the British Royal Monarchy of Queen Victoria (ruled from 1837 until 1901). The Victorian era is a convenient reference for what symbolizes the advancements made during the Industrial Revolution. Steam_punk_Fairhaven_BPP_2013_w 8
This era had the greatest technological developments of the 19th Century, including: massive agricultural output, wide distribution of railway systems, steam turbine engines (for world commerce and travel.), development and wide scale utilization of electrical power, telecommunications including ( telegraph, telephone and wireless radio) and the automobile’s internal combustion engine.
 Steam_punk_Fairhaven_BPP_2013_w 11
Regarding western social economics, the Victorian era sees for the first time, a middle class emerging, which establishes an expanding consumer based society. Trade unions are allowed to flourish, leading to greater protection for workers, including women and children. Human rights in general make huge advancements as slavery is eliminated in most of Europe and North America.
The actual term Steampunk derives from the science fiction genre — cyberpunk, which emerged in the early 1980s. In 1987, science fiction author K. W. Jeter, wrote a letter to science fiction magazine Locus, using the term, ‘steam-punks’, in describing an emerging science fiction genre inspired by Victorian fantasies.                    
Steampunk vendor shows off his hand crafted wares.
Steampunk vendor shows off his hand crafted wares.

Finding Steampunk Festival Events

When I first attended Western Washington University in Bellingham, I marveled at its charming neighborhood of Farhaven — a historic district with Victorian and Edwardian style brick architecture. A couple of summers ago I returned to Fairhaven in mid-July to sightsee. To my delight the first Fairhaven Steampunk Festival was in full swing and provided the photos used for this article.
Historic Fairhaven District has many fine examples of late 19th century architecture, including this multilevel wooden stairway
The Historic Fairhaven District has many fine examples of late 19th century architecture, including this multilevel wooden stairway
Beautifly proportioned brick buildings make for an ideal backdrop for a steampunk fesitival.
Beautifully proportioned brick buildings make for an ideal backdrop for a Steampunk festival.

Steam_punk_Fairhaven_BPP_2013_w 14

Steampunk Cinema & Television

A partial list of films which have Steampunk elements or themes
Metropolis – Fritz Lang Director (1927)
20,000 Leagues Under the Sea – Starring Kirk Douglas (1954)
Wild, Wild, West – CBS Television Series (1965-69)
City of Lost Children – Starring Ron Perlman (1995) 
Wild, Wild, West - Starring Will Smith, Kevin Kline & Salma Hayek (1999)
The league of Extraordinary Gentlemen – Starring Sean Connery (2003)
Steamboy – Japan’s most expensive animated film ever made, 10 year production (2004)
Golden Compass -Starring Nicole Kidman (2007 Film)
Sherlock Holmes 2: A Game Of Shadow – Starring Robert Downey Jr. (2011)

 

STEAMPUNK Personas

Scientist,
Aristrocat
Adventure
American Wild West
Steam Punk Film

To Learn More About Steampunk, Click On The Links Bellow

The Nine Novels That Defined Steampunk | The Steampunk Workshop

What is Steampunk? | Steampunk.com

HowStuffWorks “How Steampunk Works”

What is Steampunk? History and Culture that Define Steampunk

A History of Steampunk, Part 1 – Definitions | Jay Kristoff – Literary Giant

Steampunk – Wikipedia, the free encyclopedia

Why Defining Steampunk Is Worthwhile « Steampunk R&D

What Is Steampunk?

Steampunk Scholar: Defining Steampunk

Steampunk 101 | Tor.com

Get Ready for Mainstream Steampunk | 5 Reasons You’ll Be Talking About Steampunk in 2013 | TIME.com

Steampunk Magazine

[contact-form][contact-field label='Name' type='name' required='1'/][contact-field label='Email' type='email' required='1'/][contact-field label='Website' type='url'/][contact-field label='Comment' type='textarea' required='1'/][/contact-form]

 

 

How Did Rome’s Vitruvius, Become The World’s First Subject Matter Expert (SME) on Architecture?

2 Aug
An example of a variety of architectural styles influenced by Vitruvius. Florence, Tuscany Region, Italy. Photo by: David A. Johanson ©

An example of a variety of architectural styles influenced by Vitruvius. Florence, Tuscany Region, Italy. Photo by: David A. Johanson © All Rights Reserved

Multimedia eLearning essay by: David Anthony Johanson © All Rights

To see an alternative graphic view of this essay please visit: www.BigPictureOne.wordpress.com  

If you would like to experience some ancient Roman music while viewing this essay, open one more browser and click on the  Roman music link provided below (Synaulia III, has Latin signing and soothing melodies)

Architecture is the art which so disposes and adorns the edifices raised by man for whatsoever uses, that the sight of them contributes to his mental health, power and pleasure. Aphorism 4All architecture proposes an effect on the human mind, not merely a service to the human frame.  — From John Ruskin’s - The Seven Lamps of Architecture  ————————————————————————————————

 

The first historic footnote of Marcus Vitruvius Pollio, was not as an architect — but of his military engineering service for another overachiever,  Julius Caesar.

Vitruvius first job description involved being in charge of a Roman legion’s heavy artillery —the terrifying Ballista or catapult. Ironically, this future architectural genius was responsible for destroying opposing structures that came before his weapons of mass destruction. You could say, Vitruvius, literally had a major impact on architecture throughout the arc of his careers.

Rome_Soldier_BPP_eg100_0129

Vitruvius’ date of birth is recorded around 90 B.C. and apparently the recipient of a broad-minded education —

The floor plans from a Greek House - Vitruvius. Peterlewis - wikipedia project - image free to use with no copyright restriction

The floor plans from a Greek House – Vitruvius. Peterlewiswikipedia project – image free to use with no copyright restriction

science, mathematics, drawing, music, law, rhetoric and history. He is believed to have  apprenticed with a Greek architect, which gave Vitruvius the basic foundation and qualifications for becoming a subject matter expert (SME) on architectural principles.

Vitruvian Man by Leonardo de Vinci was named after & inspired by Vitruvius.   —This work is in the public domain in the United States, and those countries with a copyright term of life of the author plus 100 years or less.

Vitruvian Man by Leonardo de Vinci was named after & inspired by Vitruvius. —This work is in the public domain in the United States, and those countries with a copyright term of life of the author plus 100 years or less.

It’s speculated at the time Vitruvius began circulating his writing, wealthy Roman citizen’s private libraries were accessible to him for specialized study in architecture and engineering.

An upheaval caused by the Empire’s civil and foreign wars channeled Vitruvius’ professional direction towards engineering military machinery. It may have seemed like an irony to him that his skills were being used to destroy architecture, rather than create it.

Contrary to popular belief, the Romans liberally used color & brick instead of marble.  -Herculaneum, Campania Region, Italy.

Contrary to popular belief, the Romans liberally used color & brick instead of marble. -Herculaneum, Campania Region, Italy.

Hercu_laneum_BPP_g140

         

Julius Caesar's father-in-law residence - Villa of Papyri is located at Herculanieum, which was buried along with the city of Pompei, by the volcano Vesuvius, seen in the upper top frame.

Julius Caesar’s father-in-law residence – Villa of Papyri is located at Herculanieum, which was buried along with the neighboring city of Pompeii in 79 A.D., by the volcano Vesuvius, seen in the upper top frame.

                       .

.

OPPORTUNITY OPENS A DOOR FOR VITRUVIUS’ CAREER IN ARCHITECTURE

Following the assassination of Emperor Julius Caesar in 44 B.C., Vitruvius found employment with Caesar’s nephew and successor —Octavian. Another decade of Roman civil war and the eventual defeat of Marc Anthony and Cleopatra at the Battle of Actium in 31 B.C., led to a Pax Romana (Latin for “Roman peace.”)                                 Rome_Archt_BPP_et1113       

With Octavian as the undisputed ruler of the Empire, he was granted a new title — Augustus, the Emperor of Rome. Augustus channeled Rome’s wealth towards cultural, civic and public works development. This reinvestment for Rome’s glory, eventually gave Augustus bragging rights, as he is quoted, ‘I found Rome built of bricks; I leave her clothed in marble.’

An example of Roman ingenuity is in using brick for most of a building's construction, then a facade of marble or limestone is applied and finally followed by vibrant color applications.

An example of Roman ingenuity is in using brick for most of a building’s construction, then a facade of marble or limestone is applied and finally followed by vibrant color applications.

 

Augustus’ civic benevolence finally created an opportunity for Vitruvius’ great engineering and architectural contributions to move forward.

As the saying goes — behind every great man there is a great woman. It’s Augustus’ sister, Octavia, who sponsors Vitruvius to write the architectural treatise. Officially, the Books of Architecture are dedicated to Augustus, who uses them wisely to help create a marvelous metropolis.

The white outline of the architectural structure show where the colors were applied — from inside a residence at Herulaneum site, Italy.

The white outline of the architectural structure show where the colors were applied — from inside a residence at Herulaneum site, Italy.

Interior of residence in Herculaneum. Mosaics were used to bring the outside world indoors.

Interior of residence in Herculaneum. Mosaics were used to bring the outside world indoors.

Mosaic tile in the ancient port city of Ostia Antica, Lazio Region, Italy.

Mosaic tile in the ancient port city of Ostia Antica, Lazio Region, Italy.

Vitruvius, throughout his career keeps a low profile, perhaps due to observing what envy and jealousy could inflict on the Romans who attempted to shine too brightly.  

Statue in the ancient port city of Ostia Antica, next to the Tevere River, Italy.

Statue in the ancient port city of Ostia Antica, next to the Tevere River, Italy.

Cross section of Rome's Coliseum - The World's first 'super dome.'

Cross section of Rome’s Coliseum – The World’s first ‘super dome.’ This two-thousand year old stadium remains in use with major music concert & various public events.

.

.

.

.

.

.

PAST NONCONFORMING STANDARDS IN ARCHITECTURE THREATENS ROME’S RENOVATIONS 

In antiquity, Hellenistic Greek architecture sets the standards for beauty, quality and form. The Greeks, inspired by much older civilizations established around the Mediterranean, refined architecture to its classical ideal.  However, precious little had been written down regarding the styles and standards of Greek architecture, until Vitruvius ambitious efforts were realized.

Ruins at Ostia Antica, near Rome, Italy.

Ruins at Ostia Antica, near Rome, Italy.

As an effect from lack of architectural standards, instructional integrity of buildings could result in disastrous consequences, as well as the aesthetic value of religious, civic and private buildings.

Ionic style capital on top of column

Ionic style capital on top of column

Ancient Rome's Forum 3D, computer generated image  Image Created by: Lasha Tskhondia - Creative Commons Attribution-Share Alike 3.0 - Some Rights Reserved.

Ancient Rome’s Forum
3D, computer generated image
Image Created by: Lasha Tskhondia – Creative Commons Attribution-Share Alike 3.0 – Some Rights Reserved.

Vitruvius efforts of researching classic Greek architectural techniques and styles developed  into a comprehensive series of books on the methods and theories of architecture. These guiding books on style, function and practice,  served as a foundation for architects and engineers for over two thousand years and are still observed today.  

Rome Forum

Rome Forum

Cross section of Forum

Cross section of Forum

Remains of Rome's Forum

Remains of Rome’s Forum

How Did Rome’s Vitruvius, Become The World’s First Subject Matter Expert (SME) on Architecture? —More to be uploaded on Vitruvius in the coming days.

Links to learning more on Vitruvius

http://blogs.nd.edu/classicalarch/2012/09/28/many-canons-many-conversions/

http://en.wikipedia.org/wiki/Vitruvian_Man

http://www.bostonleadershipbuilders.com/vitruvius/

How about some ancient Roman music to enlighten your day? Click on the link below ↓

http://www.youtube.com/watch?v=X83IYWmcEFg&list=RD020MwBCorqBW0

——————————————————

[contact-form][contact-field label='Name' type='name' required='1'/][contact-field label='Email' type='email' required='1'/][contact-field label='Website' type='url'/][contact-field label='Comment' type='textarea' required='1'/][/contact-form]

Is Space Law Really That Far Over Your Head?

29 May Sky_look_ BPP_ae208
Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  
 Part 1 of 2 Editions – To see an alternative graphic view of this story see: Space Law | bigpictureone                                                                 
Students and instructors are encouraged to use the visual cues imbedded within the text to quickly locate key information.
Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it has had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens. 
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing overtime through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new, dimensions as needed.
There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.
Back To Rocket Science Basics.
The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins attached near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. A German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass production. Used by the German military towards the end of World War II, V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.
The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 206km (128 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.
— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.
First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.

First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army

American scientists, James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army

Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

What Goes Up, Must Come Down.
Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.
Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” - the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” - the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Because so many languages are involved with these international agreements, terms used in Space Law often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.
Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.

Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.

Cuba Gives A New Meaning To A Cash Cow.
Case Study:  In November of 1960, the second stage of a U.S. Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Dramatic Rocket Launch Failures Associated With Space Exploration.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rush reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957. WA Okang SatDshBP_e1103
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) - two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath.    Disaster at Xichang | History of Flight | Air & Space Magazine
Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and spaceports are geographically chosen to mitigate rocket launch accidents .   US rocket disasters – YouTube
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.
VLS-3 rocket, launch  - August 2003, Alcantara (Brazil) – rocket exploded on launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.
Global location & GPS coordinates of major spaceports & launch sites. ??? - Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

                                                                                                                                                             Global location, GPS coordinates of major spaceports & launch sites. Rocket launch debris fields indicated & Links to space port’s web sites included.  (CLICK ON MAP TO ENLARGE)   Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why 4.) which has the least advantage & why?

Location, Location, Location Benefits Rocket Launch Sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being threaten by a rocket launch, which could experience a catastrophic failure is why oceans are used as a safety barrier. Legal liability from a launch vehicle is a reason why all ships and aircraft are restricted from being anywhere near a rockets flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.
Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum.  An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?

Surprise space mission featured videos: Click → http://www.youtube.com/watch?v=rfVfRWv7igg →    Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law And Related Issues.

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063 

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exist today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

[contact-form][contact-field label='Name' type='name' required='1'/][contact-field label='Email' type='email' required='1'/][contact-field label='Website' type='url'/][contact-field label='Comment' type='textarea' required='1'/][/contact-form]  WA Okang SatDshBP_e1103

What Chance Will America’s Youth Have In A Changing Global Economy?

17 Apr
The first STEM EXPO Fair held at Edmonds School District's new STEM Magnet School at MountLake Terrace HS in Washington State. The student is caring a rocket, which was used in a group presentation at the fair.

The first STEM EXPO Fair held at Edmonds School District’s new STEM Magnet School at       MountLake Terrace HS in Washington State. This rocket club student is caring a rocket, which was used earlier in a group presentation at the fair.

Multimedia essay by: David Johanson Vasquez © All Rights

A big question asked by concerned people and industry leaders across the Nation is waiting for an answer… How will current and future generations stay competitive in an increasingly, complex, global economy? A high-performance education program involving a blend of Science, Technology, Engineering and Mathematics (STEM) — is promising solutions as it’s building momentum within post-secondary and kindergarten-through-grade 12 (K-12) education. 

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.

The dynamic learning created from STEM’s project based curriculum is contagious for a growing number of students. And the program’s appeal is spreading to parents, schools and corporate sponsors who are looking for ways to get involved in supporting technology learning through public education. Even the U.S. Congress solidly supports the critical initiatives driving STEM Education, which is mostly funded through the National Science Foundation (NSF.)

STEM Robotics team in action with their project

Enthusiasm and excitement was experienced by those viewing students’ technology project presentations.

A Basic Overview Of A STEM Magnet Program

By the 21st century, digital technology had transformed global industry and commerce by accelerating STEM related industries. The skill-sets, training and knowledge of entry-level applicants was falling behind. Standards for learning, used in our public educational system, were now becoming outdated. Nationally, educators needed a new, comprehensive learning approach to inspire, explore and motivate students’ achievement in the global dynamics of STEM. Today, the Nation’s public schools place greater emphasis on introducing STEM related content to both teachers and students starting as early as grade school. This program strategy allows all students of varied backgrounds, ethnicities and socio-economic levels to gain access to learning projects associated with science and technology. By presenting young students with thoughtful STEM lesson plans, they are more likely to engage in the discovery process of even the most technical subject matters. Entering middle school, students are learning accelerated levels of science and technology content, which helps them decide if they wish to enroll in a high school, offering a focused curriculum. The STEM Magnet Program pulls in a diversified population of students, engaged and motivated by their earlier learning experiences.

STEM_Fair_ESD_BPP_aq_68

 Evolution And Development Of STEM Education

Richard Blais, Chairman of the technology department for Shenendehowa Central School District in Upstate New York, developed a curriculum in 1986, to support students’ interest in studying engineering. To enable enthusiasm and confidence in students, core courses included; pre-engineering and digital electronics, infused with energetic and interactive learning environments. The curriculum’s proven a success, attracted philanthropist, Richard Liebich, who partnered with Blais to set up, Project Lead the Way (PLTW.) 

Greg Schwab - Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair

Greg Schwab – Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair

Dr. Nick Brossoit Superintendent, Edmonds School District

Dr. Nick Brossoit Superintendent, Edmonds School District

Within 10 years of PLTW’s founding, a dozen high schools in New York State adopted the program. Within the next few years high schools in 30 states were using PLTW’sPathway to Engineering Program.” Soon after, PLTW was a major national program, which used innovative activities of project and problem-based assignments. Further adding to PLTW’s momentum and success was the enthusiastic support corporations showed by endorsing and contributing financial resources towards the program.  

Mark Madison  Director, Career & Technical Education

Mark Madison
Director, Career & Technical Education for Edmonds SD

STEM Education incorporated many successful PLTW learning strategies and programs. PLTW is still active in high schools today and plays an active role in STEM Education.  

STEM EXPO Keynote Speaker - Dr. Elaine Scott Director of Science & Technology Program UW Bothell

STEM EXPO Keynote Speaker – Dr. Elaine Scott Director of Science & Technology Program UW Bothell 

Mark Sanders’, 2009 STEMmania article in The Technology Teacher, cites the STEM acronym first being used in the 1990’s. The National Science Foundation (NSF) started using “SMET” as a reference for “science, mathematics, engineering and technology.” A department program officer complained “SMET” sounded similar to “smut,” so “STEM” became the suitable replacement. It would take more than a decade for the public to recognized STEM’s referenced meaning.  

The support  and enthusiasm for STEM Education is displayed by an impressive turnout for the District's first STEM EXPO Fair.

The support and enthusiasm for STEM Education is displayed by an impressive turnout for the District’s first STEM EXPO Fair.

STEM_Fair_ESD_BPP_77_1 STEM_Fair_ESD_BPP_74 STEM_Multi_Tshirt_-E101

The Challenge Of Integrative Education: Transcending Barriers And Perceived Domains Found Within Science, Technology, Engineering and Mathematic Education

Perhaps the greatest test for a STEM Magnet Program will involve achieving the goal of course/subject integration. As a career, technical and education (CTE) instructor, I’ve heard this complaint more than any other from students — “why do I have to learn this subject, it doesn’t relate to other things I’m learning or anything I’ll ever need to know!?” In truth, all subjects and courses taught in school share dynamic connections, we as educators need to do more in helping students see their associations.    STEM_Fair_ESD_BPP_ae_24 Core sciences and engineering education have traditionally maintained strict disciplinary lines. This shortsighted disconnect is generally not found in industry, where the imperative is to find solutions which will “payoff” in the shortest amount of time. Industry’s necessity to cut through process for realizing greater profits is an important lesson plan for all STEM Programs. The realized profit for a student is — being taught how to quickly adapt new comprehensive and sometimes-unconventional learning strategies to gain a competitive advantage.  STEM_Fair_ESD_BPP_ae_18

STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.

STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.

Benefits/Advantages For Both Students And The Schools They Attend

Developing a STEM magnet program helps a school district align its resources towards assisting students preparing for college and universities, which specialize in related technical studies. An additional advantage the program offers a student pursuing a post secondary education is — an institution will more likely accept the applicant’s enrollment request based on the knowledge and technical skills achieved through a STEM Magnet Program.   

                  

STEM_Fair_ESD_BPP_87   STEM_Fair_ESD_BPP_ac_23   U.S. industries have increasingly cited the lack of qualified technical applicants they need as a reason not to hire more employees. The shortage of people with necessary STEM skills has motivated corporations to contribute their resources of funding, mentoring and sponsorship towards public education’s technology learning programs.

STEM_Fair_ESD_BPP_ah_6  

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

 

STEM_Fair_ESD_BPP_ac_35

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

STEM_Fair_ESD_BPP_104

STEM_Fair_ESD_BPP_1

Parents and community groups have eagerly supported STEM programs. Student’s parents are critical stakeholders who quickly realized the impact the program was having  — seeing impressive scholastic and attitude improvements with their children.

STEM_Fair_ESD_BPP_ae_17

STEM_Fair_ESD_BPP_ac_1

STEM Education Uses Progressive Learning Strategies To Develop Critical Learning And Self-Discipline Within Students 

STEM_Fair_ESD_BPP_ad_7

STEM Education attempts to accelerate student development by modifying the standard teacher-centered classroom with more independent learning. The curriculum encourages project-based learning, problem solving and discovery, which empower the students to engage their cognitive skills to find solutions. This form of learning develops greater self-confidence in students and it opens channels among the students themselves to interact thru peer-to-peer learning. These spontaneous collaborative activities are self-organized learning events and they naturally promote leadership within the group. It has been well documented, knowledge transferred from experience in peer-to-peer activities are highly successful forms of learning.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.

STEM_Fair_ESD_BPP_ab_15

  STEM_Fair_ESD_BPP_am_39 STEM_Fair_ESD_BPP_ac_20

Tangible Returns In Personal Development Through Teamwork And Leadership

Over the past five years I’ve had the opportunity to teach in a variety of classroom environments using a CTE curriculum. It’s remarkable seeing how engaged students are with learning their STEM subject matter. These same students are much more likely to openly contribute and share their ideas in a classroom discussion using the critical thinking skills they’ve learned to develop. Most often, STEM classes are more like being in a college environment, requiring a minimum amount of classroom management, as the students are self-motivated to complete their assignments and move on to the next project. Generally the level of leadership development and volunteerism is noticeably higher in STEM classes due to the programs emphasis on teamwork, self-confidence and academic achievement. These personal development qualities are valuable assets for students applying for college admission and later — when entering the career of their choice.

Craig DeVine - pre-engineering instructor, talks with his students near a 3-D printer

Craig DeVine – pre-engineering instructor, talks with his students near a 3-D printer

STEM_Fair_ESD_BPP_a3  

STEM_Fair_ESD_BPP_ad_15

Improving Forecast For Employment Opportunities Using STEM Education

As STEM Magnet Schools continue to place their graduates into secondary education, followed by the students successful careers in STEM related industries — STEM Education will help transform the American education landscape. If STEM Education can sustain its momentum, the future horizon looks bright for our youth to achieve economic opportunities on a global leveled playing field.   STEM_Fair_ESD_BPP_91 STEM_Fair_ESD_BPP_1 STEM_Fair_ESD_BPP_ae_12_1

Entrance to Mountlake Terrace High School -Edmonds School District's first STEM Magnet School

Entrance to Mountlake Terrace High School -Edmonds School District’s first STEM Magnet School

.

. . . . . .. .STEM_Fair_ESD_BPP_ad_18 . . ……..

STEM Education Terms & Definitions

CTE = Career Technical Education NSF – National Science Foundation PD&I = pedagogy referring to – purposeful design and inquiry PLTW = Project Lead The Way STEM = Science, Technology, Engineering & Mathematics  STEM Magnet School = A school with a concentration of STEM classes, which attracts students throughout a school district interested in enrolling in a STEM Program   STEM_Fair_ESD_BPP_ae_5

STEM Education Links

http://www.stemedcoalition.org/ Home The Future of Education / The history of STEM education in America. Handy infographic! What is STEM Education? PLTW | OUR HISTORY PLTW | STEM Education Curriculum for Middle and High Schools http://esdstem.pbworks.com/f/TTT%2BSTEM%2BArticle_1.pdf Home PBS Teachers | STEM Education Resource Center nsf.gov – National Science Foundation – US National Science Foundation (NSF) Siemens STEM Academy – STEM Education Has Arrived… Start Small, But Dream Big http://www.stemeducation.com/ STEM Resources | Early STEM Program Still Going Strong – STEM Education (usnews.com) What STEM Is–and Why We Care – STEM Education (usnews.com) https://education.uky.edu/STEM/sites/education.uky.edu.STEM/files/SEM%20604_syllabus_%20History%20of%20STEM%20Ed.pdf Historical Perspectives on STEM Education in Arkansas | Arkansas STEM Coalition http://www.fas.org/sgp/crs/misc/R42642.pdf STEM ES Home – STEM ES FAQs NSTA :: News Story

Reflections From A Future Hawaii: Can A Tropical Paradise Become A Portal To Deep Space?

28 Feb

Honolulu, Hawaii 2054: Launch gateway to L4 & L5 space stations, Tranquility Moon Base and the Mars Frontier.

Honolulu, Hawaii 2054: Launch gateway to L4 & L5 space stations, L2 Lunar Hub and the Mars Frontier. Illuminated aircraft and monorail tubes bring early commuters into the City as twilight transitions to dawn. 

Multimedia essay by: David Johanson Vasquez © All  Rights

Waikiki, on Hawaii’s Island of Oahu is a Cross Roads of the World. The allure of this tropical city attracts millions of vacationing pilgrims from across the globe. Steady infusion of foreign and domestic investment creates a dynamic and often futuristic looking metropolis.

Digital display at the Galleria.

Digital display at the Galleria.

  On my last visit to Waikiki in November, I came across an ultramodern, duty-free, fashion and clothing store  located on its main boulevard. Entering this multiplex shopping site felt like being on the sci-fi movie sets for Spielberg’s Minority Report or  Ridely Scott’s Blade Runner. My son-in-law commented as he left the “Galleria” — “it was a sensory overload experience,” and headed back to the hotel to sleep it off. Hawa_Futr_BPP_121116_a38 . .

Portal entry to Waikiki's Galleria.

A hall portal entry to Waikiki’s Galleria.

Entering the Galleria is exciting and dynamic for those who are ready  for a hyper-sensory encounter while shopping for fashion and cosmetics products.

Honolulu’s Dynamic Style of Architecture

Honolulu encompasses Waikiki and has a rich, vibrant range of architectural styles, including its own unique “Hawaiian Architectural Style. Within Waikiki, the new architecture blends modern and Japanese style. 

Modern Hawaiian architectural style.

Modern Hawaiian architectural style.

Honolulu skyline with natural vegetation in foreground.

Honolulu skyline with natural vegetation in foreground.

From our condo balcony we could see a night panorama of Honolulu, which inspired  this essay’s theme of — a reflections from a future Hawaii. 

Waikiki_Pano_BPP_ewp_44

.      

Massive walls of electronic  projection frame the entry environment in Waikiki's Galleria.

Massive walls of electronic projection frame the entry environment in Waikiki’s Galleria.

The Sky Is No Longer The Limit For Digital Displays

Contemporary marketing and advertising have embraced electronics LED’s to capture our attention and stimulate our senses. We can expect the future will sustain sensory overload for the marketing of products, services and ideas on a global scale.     

 

Multimedia environments are more common in the 21st Century. As natural environments are increasingly altered or replaced by new ones, projections of “paradise lost” will attempt to fill an expanding void.

Honolulu skyline with natural vegetation in foreground.

Honolulu panorama

.

.

A Scenario For Things To Come

Advances in artificial intelligence [AI] and remote-control technology continues expanding its role in automating transportation industries. Seamless, point-A-to-point-B travel provided by auto pilot features in ground and air transportation standard— World travel  becomes even more assessable and affordable. 

A futuristic Boeing pilotless passenger jet with personal projection systems ( PPS).

A futuristic Boeing pilotless passenger jet with personal projection systems ( PPS).

Both Work and play  amenities can be extended to just about any  cabin environment for an enhanced travel experience.

i

South Point (Ka Lae) – Naalehu, Big Island, Hawaii +18° 54′ 39.96″, -155° 40′ 52.00″ “The Pan Pacific Launch Site” — Gateway To Lunar And Deep Space Exploration

↑As international space exploration matures, greater consortiums and partnerships develop between countries and corporations to create  space operations staging points near Earth’s orbit.

NASA Illustration of Lagrange Ponts of Earth-Sun System (not proportion to scale)

NASA Illustration of Lagrange Ponts of Earth-Sun System (not proportioned to scale)

The Lagrangian Points: of L2, L4 and L5 are  locations relatively close to Earth, which provide stable orbits for building hubs to assist in lunar, deep-space and asteroid exploratory missions. 

 

                   

Photo courtesy of NASA.

Photo courtesy of NASA.

The Big Island of Hawaii's South Point ( Ka Lae) is in the neighborhood of 1,400 miles from the  Equator,  which requires less fuel for launching rockets into orbit.

The Big Island of Hawaii’s South Point ( Ka Lae) is in the neighborhood of 1,400 miles from the Equator, which requires less fuel for launching rockets into orbit.  On the right, a SpaceX rocket has lifted off from the Pan Pacific Launch Site, on its journey to an international L2 Lunar Hub – Photo illustration: David Johanson Vasquez © 

Rocket view looking back towards Hawaii's Pan Pacific Launch Site.

Space view looking back towards Hawaii’s Pan Pacific Launch Site. Photo by: David Johanson Vasquez ©

Locations of previous NASA Apollo Manned landing sites. Photo illustration courtesy of NASA.

Locations of previous NASA Apollo Manned landing sites. Photo illustration courtesy of NASA.

Section view of International L2 Lunar Hub in stable platform orbit. Prime contracting consortium: Boeing, Mitsubishi HI, AviChina, Hindustan Aeronautics and ST Engineering.  — Photo illustration: David Johanson Vasquez ©

Section view of International L2 Lunar Hub in stable platform orbit. Prime contracting consortium: Boeing, Mitsubishi HI, AviChina, Hindustan Aeronautics and ST Engineering. — Photo illustration: David Johanson Vasquez ©

"Asteroid 1" - artist concept of asteroid mining mission to an Earth approaching asteroid.NASA sponsored a study on space manufacturing held at Ames Research Center (ARC) June1977, commissioned painting by - Denise Watt.

Asteroid 1″ – artist concept of asteroid mining mission to an Earth approaching asteroid.
NASA sponsored a study on space manufacturing held at Ames Research Center (ARC) June 1977, commissioned painting by – Denise Watt.

Digital post cards from the Martian Frontier.— Photo illustration: David Johanson Vasquez ©

Digital post cards from the Martian Frontier.
— Photo illustration: David Johanson Vasquez ©

Digital post cards from Mars - mining operations on the "Red Planet."  — Photo illustration: David Johanson Vasquez © All Rights.

Digital post cards from the Martian Frontier – mining operations during a “Red Planet”sunset. — Photo illustration: David Johanson Vasquez © All Rights.

Links & Resources:

http://www.hawaii.edu/news/article.php?aId=4926

University of Hawaii Manoa Small-Satellite Program Selected for NASA launch

.

http://www.universityofhawaiiinnovation.com/features/readying-for-liftoff/

University of Hawaii innovation article about UH College of Engineering Satellite Program –  by: Jolyn Okimoto Rosa

 

http://www.youtube.com/watch?v=dHdNSS85c5M

↑    ↑    ↑    ↑

Please view this window into the future, with a marvelous video of a low Earth orbit (LEO). Watch in full view mode, with the volume turned up.

.

.

[contact-form][contact-field

label='Name' type='name' required='1'/] [contact-field label='Email' type='email' required='1'/][contact-field label='Website' type='url'/][contact-field label='Comment' type='textarea' required='1'/][/contact-form]

Will the Last People Remaining In America, Turn the Lights Back On?

19 Dec Will the Last People Remaining In America, Turn  the Lights Back On?

ScienceTechTablet provides periodic updates on solar activity . The essay begins below the lead photo .

Prepared jointly by the U.S. Dept. of Commerce, NOAA,

Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30

Silhoute_man_ocean_BPP_1Eg227

Multimedia essay & images by: David Johanson Vasquez © All Rights Reserved

Part 1 & 2 of the series

To fully appreciate this story you’re encouraged to view two earlier multimedia essays on solar storms at: There’s nothing new under the Sun « Science Tech Tablet  Will the current solar storms hitting Earth, lead to lights-out for us all by 2013? « Science Tech Tablet  As a likely threat to ending our modern global civilization — a severe solar storm is unmatched as a natural disaster and yet it’s vastly underreported. An alternative graphic format of this essay is at: www.BigPictureOne.wordpress.com 

 

Now that we’ve moved beyond December 21, 2012 and you know, the Mayan prophecy wasn’t about the end of the world, there’s some truly sobering news about what really does threaten our civilization. A powerful, natural solar event, which affects everyone living today, is now reaching the peak of a violent cycle. Documented by history and science, this event threatens our civilization by destroying the essential technology we rely on and throwing us all back into the “dark ages.” The key to avoiding this global catastrophe is within our grasp — if  we and our National leaders are prepared to be aware of the problem and act by using the correct resources  for defending our National power grid.

A Shocking Glimpse of Things To Come…                                                               Aurora_Bor_BPP_il_0011

To understand what we’re up against, you only have to go back a short distance of time, to March 13, 1989A chain-reaction near the surface of the sun was triggered by a solar flare on March 9. Thousands of miles of magnetic arcs collided, causing violent high-energy explosions, which were instantly hurled into space. A plasma cloud from the event was observed heading directly towards earth at a million-miles per hour. As the sun’s radiation particle penetrated the Earth’s atmosphere, short-wave radio signals became disrupted, indicating our planet’s protective magnetic field was being overwhelmed.  And the brilliant, surreal light-shows from the“northern lights” heralded the solar storm to astonished viewers in Florida and even Cuba.

A cascading wave of technical glitches, involving electronic components suddenly occurred globally and beyond! The monitoring systems on the U.S. Space Shuttle were sending corrupt signals to mission controllers, while a host of satellites began malfunction and a Japanese satellite was damaged beyond repair.

At 2:44 a.m., after only 90 seconds of detection, the massive Hydro-Quebec power company was knocked offline by surging geomagnetic energy caused from the aggressive solar storm. Moments later, hundreds of utilities within the Eastern U.S. were suddenly blacking out. As a result of the blackout six-million people were now without power on a winter’s day. Within 40 minutes of the geomagnetic current’s detection — the force continued to build  like a Tsunami as it surged through the entire continental U.S. power grid, nearly collapsing all the Nation’s electric utilities in its path. The event’s speed and power led some to believe we were under attack from a Soviet nuclear electromagnetic pulse “EMP.”                 

Particle energy shock wave From solar storm is mostly defelcted by Earth's magnetic poles

Particle energy shock wave From solar storm is mostly deflected by Earth’s magnetic poles

Tech_abst_BPP__3ea1

Silhoute_Bldg_BBP_et204

The Achilles Heel of Our Technology.

Teams of scientist, engineers and physicist began piecing the 1989 events together and realized it was first, large scale, solar geomagnetic storm to hit during the postmodern digital electronic era. As powerful as the solar storm was in creating a rogue like wave of, geomagnetic induced current (GIC), which saturated the entire planet — it was only one-tenth the strength of the earlier 1921 “super solar storm.” Our electric infrastructure back in the 1920s was in its infancy and we didn’t have voltage sensitive microelectronics, which we now depend on to facilitate all our electronic devices. Today’s complex and overstretched power grids, with their high-power transmission lines are susceptible to geomagnetic energy created from solar storms.

The 1921 solar storm was what scientist classify as a one-in-hundred year storm. Many scientist from NOAA, NASA and the National Academy of Scientist (NAS) predicts a 10 to 12 percent probability of a super solar storm happening within the next 15 years and 100 percent likely beyond the referenced time  period.

The 2013 solar cycle is now entering its 11-year, peak phase known as solar maximum, this critical phase is of a grave concern as the sun begins to reverse polarity and creates the potential for a super solar storms. History reveals over centuries, a consistent pattern in the approximate 11 year solar cycle… put the pattern together and it may reveal how little time we have to prepare. Here’s a sample pattern from three of the largest storms in recent history:  1989 Hydro-Quebec geomagnetic storm, the 1921 super solar storm event arrived and the greatest of them all — the 1859 Carrington Solar Storm event all taking place within the 11-year solar maxim.   

Satellites, The Holly Grail of Telecommunications.

Photo courtesy of NASA

Photo courtesy of NASA

Solar storms and geomagnetic energy presents a spectrum of threats to satellite operations. Scientist, physicists and aerospace engineers have realized the challenges solar storms present to satellites since they were first launched into orbit.  The geomagnetic energy caused from mass solar energy interacting with the Earths magnetic field, can cause satellites to lose their orientation and if not corrected… can end their lives or even send them hurling towards Earth . Geomagnetic energy is similar to the static electrify you create when walking on a carpet and then is discharge by touching a grounded object. In satellites there’s no way to discharge the electricity, so it will continue to buildup energy and can fry the tightly packed circuits or damage one of the orientation gyros within it. Another problem created from a GIC is the magnetic energy it contains, which can erase the memory in your computer or any memory storage device. The list of essential industries and services that are threatened by CIGs, goes well beyond the banking and financial industries.

Telstar 1 Developed by Bell Labs and a consortium  of international enterprises

Telstar 1 Developed by Bell Labs and a consortium of international enterprises

Even though this subject is well know in the satellite  industry, it’s not a topic journalists will have much luck in finding someone to go on the record for in interviews. Satellite companies don’t like admitting the reasons for technical problems experienced with their products. The military is even less forthcoming with satellite information. It’s understandable why the armed services maintains a proprietary stance on its satellites, but commercial satellite companies could benefit themselves and the entire industry by sharing their experiences with solar storm related activity.

If you have cable television, you’ve probably noticed at some time, the satellite transmitting your program being disrupted by solar storm radiation. An indicator for solar interference is digital tiling, which momentarily appears like a frozen video frame, before breaking up into smaller digital tiles. The last few times I’ve noticed digital tiling on my television, I verified it was from solar interference by going to NOAA’s space weather site, which in fact, confirmed elevated solar storm activity was happening.

 

Was It My Question On Satellite Solar Vulnerability,  Which Brought An Abrupt End To An Interview With U.S. Senator Maria Cantwell?

Senator Cantwell  sharing her views on technology and education. Photo by: David Johanson Vasquez © All Rights Reserved.

Senator Maria Cantwell sharing her views on technology and education. Photo by: David Johanson Vasquez © All Rights Reserved.

This past July, I arranged a phone interview with Washington State, Senator Maria Cantwell.  Senator Cantwell serves on the U.S. Senate committee for Commerce, Science and Transportation, satellites are a topic this committee holds hearings on. Cantwell is also the committee Chairman on Energy, for the Senate’s Energy and Natural Resources committee, which deals directly with the Nation’s electric grid.

The interview began with Senator Cantwell and her advisor as they were traveling to an event. After I gave a brief intro to the interview topics, Cantwell was asked to share what updates the Senate had on hardening our satellite against solar storms — particularly in respect to the aging GPS satellites, which are now being replaced. There was silence for a moment,  it sounded like the Senator and her advisor had covered the phone for a discussion. Senator Cantwell said she would like to get back to me on that subject — I sensed in that moment, the satellite topic should have been brought up last, so I quickly changed gears and followed-up with — why the Senate was taking so long in approving a Bill that would help protect the National electric grid? Again, I didn’t get a direct answer and the Senator asked if we could finish the interview at another time.

Our latest technology in the  transmission of electric power uses GPS satellites to help regulate the flow of high voltage electricity through power lines. Also used in the control and monitoring of the electric power is shortwave radio and phone lines all of which can be seriously interrupted by severe GIC caused from a solar storm.

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms.  Photo: David Johanson Vasquez © All Rights

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms. Photo: David Johanson Vasquez © All Rights

As it turned out, the Senate later that month approved 84-11 to move forward with advancing the proposal for Cybersecurity Act of 2012, which includes protecting the electric grid. As an example of taking one step forward and then taking two steps back — the Senate voted down in August and again in November the Cybersecurity Act. Part of the reason for the Bill not being approved is because of a legislative tactic, which attached unrelated or conflicting objectives to the Bill, so that opposing side feels they can get more out of the negotiations. It’s seems startling in this era of politics, when the Congress or Senate is able to come together and quickly pass any new law without using this protracted tactic.                      

EWA FARM 108.2

It has to be noted, this was a phone interview, it wasn’t  face to face, it’s possible a more pressing matter came in while the interview was in progress. Also, the  Senator was in the final months of her  Senate election campaign and probably was advised not to comment on anything, which could be perceived as politically damaging.

The interview illustrates how challenging it is to help inform the public, along with government officials on what we all are facing from an impending 100-year solar storm event. I have contacts within the electric power industry, including the Bonneville Power Administration, which have been helpful in providing their own perspective on geomagnetic storms, but they’ve all asked to speak off the record. Unfortunately there’s too much pressure to play down the GIC issue from inside the power industry. It’s not pleasant realizing how poorly prepared we are for a potential natural disaster on this scale — that’s why I believe, “mainstream corporate media” has neglected informing on the consequences solar storms can have on society. In reality, there are  precautions which can be used to help protect the grid and society — but it requires courageous political leadership, which is almost as big as the problem its self.

SubS_BPP_70926_bt84

An Overstretched, Electric Power Grid Creates the Mother of All Antennas!

Government regulators, private and most public power companies have missed critical opportunities to invest in, strengthen and protect our electric power infrastructure from solar geomagnetic storms. Since the wake-up call of the 1989 Hydro-Quebec solar storm, our nation’s electrical grid has been overburden with higher demand and added thousands of high-voltage transmission lines. The vast network of power transmission lines stretching over the continent creates the mother of all antennas, by channeling geomagnetic energy into the electric grid. Like a lighting rod in a thunder-storm, the grid’s high-power transmission lines will channel the solar storms converted energy. The lack of investment and overuse of the grid makes it much more vulnerable than it ever was in 1989. An impending solar storm could produce the “perfect geomagnetic super storm,” which in a matter of minutes… decimates most of the nation’s ability to transmit power for several months or even years.

Recently there were comments in an open online physicist forum, regarding  threats from geomagnetic storms to the National grid. One thread mentioned a possible way to stop a serious GIC event from destroying high-voltage transformers, would be to physically cut the power lines to the transformers. Another physicist replied that the plan just might work, however he wasn’t sure anyone would be willing an attempt to physically interrupt the electricity collecting behind a continent of power lines.   IND MTS Clouds BPP_E116

OilWell_BPP__034

Underground pipelines and rail lines are also perfect conductors for channeling GIC’s electric current and have their own issues relating to damage from electro magnetic energy.

Envirn Indust_BPP e1007

In the 1989 Hydro-Quebec geomagnetic storm, there were only 90 seconds to make a decision on what action to take. Most likely, power utilities today are more prepared with an action plan — however deciding to shut down any section of the grid is an extreme responsibility for an individual. To give an example, last November I was in Honolulu, Hawaii, meeting with a friend who works for the Core of Army Engineers. She mentioned, earlier in the year on the Island of Oahu, a serious problem occurred with the transmission of electricity. A plant operator realized something was critically wrong and made the decision to disconnect the power, which caused large sections of the Island to lose electricity. The initial response from the public and local media was anger and criticism towards the operator, for shutting down the power without notification to thousands of people. It turned out the utility operator actually saved the system from being severely damaged by deciding to act quickly. In this event if the power was allowed to remain on, it could have caused severe system damage and  with repairs extremely expensive. So in reality the operator’s quick decision, and courageous action saved the day for thousands of customers.

Image courtesy of NASA.

Image courtesy of NASA

Deregulation of the Power Industry, Combined With No Centralized Authority over the National Grid In An Emergency  — Potentially Jeopardizes the Economy and Our Safety.  

Deregulation of the power industry has been an adopted policy  since the 1980s. It was supposed to encourage industry competition, for creating greater profits for the utilities, allow for steady improvements of infrastructure and lower cost for consumers. In reality deregulation has failed to deliver on its stated objectives.

Independent and comprehensive cost/benefit studies were not completed before deregulation was adopted. Joseph Swidler, former chair of the Federal Power Commission, stated in 1990 editorial of The Electricity Journal — While there is bitter disagreement over … changes, there can be little argument these are occurring haphazardly without the benefit of comprehensive analyses at a national level.” A specific example is the absence of an analysis of the decrease in benefits from coordination as mentioned above, since competition typically results in decreased coordination. [A. CasazzaAllan J. Schultz and Joseph C. Swidler A brave new world: Let's look before we leap The Electricity Journal, 1990, vol. 3, issue 9, pages 40-43]                                             Money_int _BPP_a223

Engineering originally defined the qualifications and standards used for policy and management in the power industry.  After deregulation regulated the industry, marketing and finance became the policy and management standard.

Environmental stock photography for a New Dawn.

While the original standards used in the power industry were not perfect, it was more reliable and efficient than the current system — which has overstretched the National grid with higher capacity transmission lines and not sufficiently updated key infrastructure needs. Deregulation is what allowed for large-scale fraud and market manipulations to take place. This created unethical opportunities to gouge private consumers and large corporate customers by the former Enron Company in the early part of the 21st Century. 

The Issue of High Voltage Transformers.

According to industrial insurer’s publications, deregulation has forced the majority of power utilities to survive on a slim profit margin, which does not provide adequate reinvestment for infrastructure or necessary research and development. Many of the high voltage transformers still functions today are at the edge of their life expectancy. It typically takes three years to order, install and have a transformer ready for service. High voltage transformers are no longer manufactured in the U.S.. On average, these industrial transformers weigh 100 to 200 tons and are too large to be sent by aircraft. Ironically these transformers require massive amounts of energy to manufacture.     

A severe geomagnetic storm creates geomagnetic induced current (GIC), which transfers massive electric energy through the path of least resistance. This energy travels through water, earth and especially through metal such as underground pipes, rail line and electric power lines. The GIC saturates transformers, which distorts the voltage in the system and violently disrupts the entire process of transferring electric power. 

                                                                              SubSt_BPP0709_bt73             

As a critical component in the distribution of electric power, transformers have proven vulnerable to geomagnetic energy and their survivability is a major concern to engineers and scientist.  It’s likely a majority of the high voltage transformers would be at risk from the geomagnetic energy caused from a super solar storm. The transformers and the Nation’s electrical grid are more vulnerable on the East coast due to how overstretched the system is there. In the Western part of the U.S. the power utilities have been more proactive in protecting transformers and the grid is not as densely connected as it is in the East (at least in theory.) The further south in longitude a power grid’s location is a factor in lessening the effects of a geomagnetic storm. Also a location’s geology is a factor, some rock compositions conduct geomagnetic energy more efficiently than others.

According to leading engineering experts in the power industry, a practical strategy to protect the high voltage transformers is to install a surge protector like component on each transformer. The devices are about the size of a washer machine and would cost from $ 500 million to $ 1 billion dollars for the entire coverage. That’s probably the best value  of an insurance policy which would cover the Nation’s electrical grid, especially compared to the alternative of replacing  several hundred industrial size transformers.

Power

Transformers a risk to keeping the power on – 360 News – Lloyd’s

A Comprehensive Study, With Extensive Geomagnetic Storm Computer Modeling.

In 2010, The Oak Ridge National Laboratory produced an extensive report titled: Geomagnetic Storms and Their Impact on the U.S. Power Grid. The Metatech Corporation was contracted to produce extensive computer modeling on various solar and geomagnetic storm scenarios. The report has been presented to both the U.S. Senate and  House Congressional subcommittee hearings. Here’s a link to see for yourself how severe and extensive solar storm impact is likely to be using computer modeling.  

http://www.ornl.gov/sci/ees/etsd/pes/pubs/ferc_Meta-R-319.pdf

The Prospect of 400 Chernobyl’s

                                                                                                               400_chevnob_4E103

.

Russia’s Chernobyl and the United States’ Three Mile Island, are considered two of the greatest nuclear power plant disasters in history. Their legacy was clouds of lethal radiation, which caused mass evacuations and contaminated areas still not safe for people to inhabit. When these nuclear accidents occurred, there were no earthquakes, hurricanes or tornadoes to blame. The cause was a combination of technological failure and human error, which prevented the reactor’s cooling system to function, ultimately causing the nuclear disasters.

On March 11, 2011 the nuclear power plant in Fukushima, Japan  experienced a violent 9.0 earthquake, followed by a massive tsunami. This time it was a natural disaster which caused a failure of the reactor’s cooling system. The backup electric generators to the reactor’s cooling system also unexpectedly failed, causing the reactors to begin overheating. The reactor released a  substantial radioactive cloud, which forced a 20 mile radius evacuation.

There are federal disaster relief agencies, scientists and engineers questioning if a super  geomagnetic storm would burn out the backup generators for cooling a nuclear power plant’s reactor. Another question is, will the trucks used for hauling diesel to backup generators, even work after waves of geomagnetic energy travel through a vehicles microelectronics. Any type of car transportation or truck transport  will be extremely limited, if electricity is not generated to pumping gasoline and diesel from service stations.

In Hurricane Sandy and Katrina, a number of hospital’s critical backup generators failed to operate. It’s uncertain if backup generators will survive a severe geomagnetic disturbance from a solar storm. With over 400 nuclear power plants throughout the world, a serious geomagnetic storm, could potentially lead to loss of all electrical power to reactor core cooling systems, which would release radiation contamination on a global scale.

 

The Tragic Events of the RMS Titanic Serves As A Cautionary Analogy

Arctic_Ice_Field_BPP_6E54

This past April marked the 100 year anniversary of the “unsinkable” Titanic ocean liner’s maiden voyage. The once modern looking, massive ship was state of the art technology in 1912 — today it represents human arrogance and hubris towards over reliance on technology. The  captain of the Titanic,  Edward J. Smith, was quoted, of ‘not conceiving any disaster which could happen to his vessel’ — after all, no major passenger ship had been lost for nearly 50 years before the launch of the Titanic.

882 feet (269. meters) long -maximum breath 92 feet (28. meters) 46, 328 gross registered tons.

882 feet (269. meters) long maximum breath 92 feet (28. meters) 46, 328 gross registered tons.

White Star Line of Liverpool, England was the premier shipping company at the beginning of the 20th Century. White Star commissioned the construction of RMS Titanic – an Olympic class steam liner.  The passenger ship was outfitted with twin colossal, coal-fired reciprocating turbine steam engines, and the ship’s electric generator produces more power than an average city’s power-plants at that time. It also featured the latest wireless communication technology, capable of sending and receiving signals 1,000 miles away. Owned and operated by the Marconi Company, the radio room was operated 24/7 using two technicians. The radio’s functions were primarily for commercial passenger telegram services, but it also served an operations function for the Titanic as it received useful weather reports and ice warnings.

A functional, forced air heating system used electric fans to push warm air through a ventilation network. The Titanic could in an emergency, produce its own fresh water from seawater using a desalination process. Many new living improvements and conveniences on this marvelous, “floating city” employed advance technology created during the late industrial era.

RMS Titanic in its final stages of construction is being outfitted before sea-trials.

RMS Titanic in its final stages of construction is being outfitted before sea-trials.

220px-Titanic_cutaway_diagram

Full Speed Ahead Into the Night and Unseen Ice Fields

On April 14, 1912, three days into its maiden voyage the Titanic with its 1,317 passengers and 885 crew members moved swiftly across the North Atlantic. The ship averaged an efficient, 21 knots per hour (24 mph; 39 km/h) through the icy cold waters and was less than 1000 miles from its New York destination. As the streamliner approached the coast of Newfoundland, the skies were clearing over an unusually calm Atlantic Ocean. Throughout the day, Titanic’s radio operators received warnings from various ships in the route ahead of where they would soon enter — the captain responded by charting a 10 mile precautionary adjustment to the south for the ships heading. Throughout the day, warnings in Morse code reached Titanic’s radio operators in increase numbers and with more alarming urgency. The Captain assured the concerned operators — their ship had nothing to fear from icebergs and they should  attend to the passengers’ important communication needs. As the late afternoon melted into –,  Titanic was cruising at full-steam ahead and virtually blind in the calm featureless night.  

Comparison of Morse Code.

Comparison of Morse Code.

Two ship’s lookouts climbed the long later attached inside the steamship’s smoke stack to reach the crow’s nest for the last time. Unfortunately, the bridge’s binoculars were missing, so the men were forced to rely on their plain eyesight to see any impending danger. The Titanic cruised effortlessly through the flat calm ocean, creating a false sense of security to the crew and passengers — but with icebergs in the water, on a moonless night meant no splashing waves to help warn a watchful lookout. Just before midnight, Fred Fleet, the lookout  in the crow’s nest spotted the Titanic’ s dreadful rendezvous with destiny — a massive iceberg looming dead ahead. The bridge responded immediately by skillfully turning the ship away from the iceberg, the quick maneuver nearly was successful — but then… a horrible sound of solid ice scraping against sheets of steel plates and the profound, deep shutter delivered to the ship — telegraphed the Titanic was mortally wounded. Five watertight compartments were breached just below the waterline by the jagged ice, if just one-less compartment would have torn open, this story wouldn’t be told. The largest ship in the world, this floating world with its community of families, workers and wealthy aristocrats, now had less than three hours before the unthinkable end would happen.

IND MTS Clouds BPP_E20

The Captain and the Star Line management on board must have fallen into total shock and denial of what was happening to their Titanic, technological wonder. These individuals in charge with the responsibility for the ship’s operations and ultimately the passengers safety, were steeped in overconfidence, as they never conducted drills or consider necessary emergency contingencies and procedures. Fortified with hubris that the Titanic could withstand any act of nature, they lost sight of their most important duties of safe operations and procedures — after all, they believed in the myth their ship was built to be unsinkable.

In the same way the Titanic’s symbolizes a mythic system of indestructible technology, which can withstand anything nature can throw at — our civilization and specifically our Nation is repeating some of the basic errors regarding — an over reliance, complacency, and trust in life supporting technologies.  We’ve been so fortunate to have built a civilization, which harnessed electrical technology to run our industry, heat our homes and provide our security.  For decades, with few exceptions, we’ve had uninterrupted, reliable electric power that is now, taken for granted. Most of us have become shortsighted, with blind-faith in assuming we’ll have reliable electric power, whenever or wherever we need it.

Recorded history has demonstrated solar storms are a real threat to our technologies and civilization. Solar cycles,flares and storm events are a regular occurrence — a super geomagnetic storm will happen again, creating potential for catastrophic effects beyond any scale humanity has ever faced. Reliable, national and international scientific institutions and governmental agencies in charge of safety and security, increasingly  warn us of these real threats to the electric grid. 

Unlike RMS Titanic’s captain, whose hubris and over reliance on the technological engineering of his steam liner, lead to the tragic loss of his passengers and the world’s largest ship  — our elected officials and top power industry executives, need awareness of our technology’s fatal weakness and decisively act now to defend it! If our Nation, like the Titanic waits until the impending disaster is upon us to act… It will be too late — the  majority of our population, like those on the doomed infamous ship a 100-years ago will be scrambling for lifeboats that aren’t there. The millions of lives depending on electricity to transport food, medicine and provide security will have no safety-net for years to come. The threat from a natural continental or global catastrophic event is a known reality. It’s time for everyone to educate themselves and have an open dialogue with their families and communities regarding what precautions are necessary to minimize their effects. ~

Particle energy shock wave From solar storm is mostly defelcted by Earth's magnetic poles

Particle energy shock wave From solar storm is mostly deflected by Earth’s magnetic poles

Tech_abst_BPP__3ea1

A most beautiful video time-lapse of the Aurora Borealis – click →  http://vimeo.com/11407018

Government Agencies Which Are Warning Of Solar Storm Potential Dangers

Severe Solar Storms Could Disrupt Earth This Decade: NOAA

Scientists warn solar storms could be “global Hurricane Katrina” | Homeland Security News Wire

Testimony Given to  the U.S. Congress Regarding Threats to the National Grid from Solar Storms

http://www.solarstorms.org/CongressSW.html

SHIELDAct.com / Read H.R. 668 – The SHIELD Act

Testimony Given to the  U.S. Senate Regarding Threats to the National Grid From Solar Storms

http://www.ferc.gov/eventcalendar/Files/20110505082259-Testimony%20McClelland%20(5-3-11%20Final).pdf

http://www.ferc.gov/eventcalendar/Files/20120717100957-7-17-12-FERC-Testimony.pdf

Who Is In the Lead For the Darwin Award Between the U.S. Senate or Congress

Here are some links for your review to inform your own decision on who deserves the Darwin Award.

Feds and Utilities battle over Solar EMP threat in 2014 | SpaceBattles.com

Senators debate security of electricity grid – Washington Times

Senate dumps strategy to prevent EMP damage | The Total Collapse

Murkowski Blocks Effort to Protect US Power Grid

What Can We As Citizens Do To Protect the National Grid

 

Sun_Drama_red_e3

.

.

.

Please check back to view the complete story — new content is being added daily, including an interview with Washington State Senator Maria Cantwell and comments from government agencies and electric power grid representatives.

.

Solar Storm  & Electrical Power Portal  [Editorial Links Government Links Industry links & Resources]

Solar Storms & Solar Weather

Space: NOAA Watch: NOAA’s All-Hazard Monitor: National Oceanic and Atmospheric Administration: U.S. Department of Commerce

NOAA / NWS Space Weather Prediction Center

Solar Storm Warning – NASA Science

SpaceWeather.com — News and information about meteor showers, solar flares, auroras, and near-Earth asteroids

Active Solar Regions – HAMwaves.com

Solar Satellites Research

Solar Shield–Protecting the North American Power Grid – NASA Science

Electric Power Industry Related to Solar Storm Issues

Disputes Dog Efforts to Protect Transmission Grid From ‘High-Impact, Low-Probability’ Threats – NYTimes.comEmergency Preparedness & Societal Concerns Related to Solar Storms & EMPs

Coming solar storm not likely to affect power grid – Technology & Science – CBC News

Are We Smart Enough to Survive … Or Will Humanity Win a Darwin Award? – Washington’s Blog

Editorial Articles, Media, Blog – Links & 

Not Ready for a ‘Solar Sandy’ – NYTimes.com

Guarding Against Solar Storms – NYTimes.com

Impacts of Severe Space Weather on the Electric Grid by the MITRE Corporation, 11-2011.

Lawrence E. Joseph: The Solar ‘Katrina’ Storm That Could Take Our Power Grid Out For Years

Scientist Concern, Massive solar flare storm may occur before warning system is complete | The Guardian Express

Solar storm sparks dazzling northern lights | World news | The Guardian

Solar Storm’s Auroras May Dance Above Mid-U.S. This Weekend | Wired Science | Wired.com

Solar storm incoming: Federal agencies provide inconsistent, confusing information – Capital Weather Gang – The Washington Post

[contact-form][contact-field label='Name' type='name' required='1'/][contact-field label='Email' type='email' required='1'/][contact-field label='Website' type='url'/][contact-field label='Comment' type='textarea' required='1'/][/contact-form]

For the Archives

chronicles of the everyday

ooaworld: ooa's Travels, Photos and Art

Movie, Photos, Videos, Art, Writing, Travel, Web from around the world

PandoDaily

speaking truth to the new power

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Via Lucis Photography

Photography of Religious Architecture

Daring to Live in Love!

The Alternate Economy

ooa rev's LifeArt

ooa rev's LifeArt

WordPress.com News

The latest news on WordPress.com and the WordPress community.

Eric Warren's Blog

Telling stories through words and images.

Follow

Get every new post delivered to your Inbox.

Join 105 other followers

%d bloggers like this: