Archive | History of information technology RSS feed for this section

Is Space Law Really That Far Over Your Head?

29 May
Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  
 Part 1 of 2 Editions – To see an alternative graphic view of this story see: Space Law | bigpictureone                                                                 
Students and instructors are encouraged to use the visual cues imbedded within the text to quickly locate key information.
Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it has had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens. 
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing overtime through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new, dimensions as needed.
There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.
Back To Rocket Science Basics.
The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins attached near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. A German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass production. Used by the German military towards the end of World War II, the V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.   http://www.v2rocket.com/start/makeup/design.html
The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 83 to 93 km (52 to 60 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.
— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.
First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.

First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army

American scientists, James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army

Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

What Goes Up, Must Come Down.
Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.
Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Because so many languages are involved with these international agreements, terms used in Space Law often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.
Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.

Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.

Cuba Gives A New Meaning To A Cash Cow.
Case Study:  In November of 1960, the second stage of a U.S. Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Dramatic Rocket Launch Failures Associated With Space Exploration.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rush reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957. WA Okang SatDshBP_e1103
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath.    Disaster at Xichang | History of Flight | Air & Space Magazine
Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and spaceports are geographically chosen to mitigate rocket launch accidents .   US rocket disasters – YouTube
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.
VLS-3 rocket, launch  – August 2003, Alcantara (Brazil) – rocket exploded on launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.
Global location & GPS coordinates of major spaceports & launch sites. ??? - Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

                                                                                                                                                             Global location, GPS coordinates of major spaceports & launch sites. Rocket launch debris fields indicated & Links to space port’s web sites included.  (CLICK ON MAP TO ENLARGE)   Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why 4.) which has the least advantage & why?

Location, Location, Location Benefits Rocket Launch Sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being threaten by a rocket launch, which could experience a catastrophic failure is why oceans are used as a safety barrier. Legal liability from a launch vehicle is a reason why all ships and aircraft are restricted from being anywhere near a rockets flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.
Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum.  An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?

Surprise space mission featured videos: Click → http://www.youtube.com/watch?v=rfVfRWv7igg →    Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law And Related Issues.

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063 

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exist today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

 WA Okang SatDshBP_e1103
Advertisements

Who Were the Titans of Telecommunication and Information Technology?

31 Aug

Multimedia Essay By: David Johanson Vasquez © All Rights – Second Addition – Series 1 & 2

— Inventions are rarely the result of just one individual’s work— but are created through collective efforts overtime,  from several individual’s observations, theories and experiments. Benjamin Franklin’s role in demystifying electricity, Michael Faraday’s discovery of “induced” current, Nikola Tesla and Guglielmo Marconi’s wireless radio communication… are just a few of the technology pioneers responsible for developing modern telecommunications. I regret not having the resources  for this essay’s inclusion of all men and women, whose’ discoveries made telecommunication and information technology possible.    

Definition of technology — “the systematic application of scientific or other organized knowledge to practical tasks.”  (J.K Galbraith)  “the application of scientific and other organized knowledge to practical tasks by… ordered systems that involve people and machines.” (John Naughton)

For an alternative graphic format on this program, please visit:  http://www.BigPictureOne.wordpress.com

Telecommunications took its first infant steps as the industrial revolution was rapidly compressing concepts of time and space. The first half of the 19Th Century witnessed modern societies using steam locomotive trains for mass transit and electronic communication through telegraph technology. Steamships shrunk the world by delivering capital goods, raw resources and people to remote locations within fractions of the time it took before. With the industrial revolution nearing its peak at the close of the century, a new communication, innovation was developed, which helped transform the modern age into a postmodern era. 

Inventor, Alexander Graham Bell’s Washington D.C. company, which developed the telephone, eventually evolved into a prime research laboratory. His vision for a R&D lab, created a foundation for the digital technologies of today. In the following century, another key, R&D technology titan— Xerox PARC  enters the stage, which helps to set in motion personal computing and expand the information technology revolution.

The steamship S.S. Empress of India near Vancouver B.C.
From the private collection of: David A. Johanson ©

Scottish born Alexander Graham Bell
from the collection of: Library of Congress

The French Technology Connection

A French, visionary government in 1880, recognized the importance of Alexander Bell’s invention, and awarded him the Volta Prize. A sum of 50,000 francs or roughly, $250,000 in today’s currency came with the honor. The funds were reinvested into research for use in education to enable knowledge on deafness. Growing investments to fund the creation of Bell Telephone Company on March 20, 1880 allowed for expanded research on recording and transmission of sound.

Can You Hear Me Now     telep_road_BPP_et110

The telegraph and telephone were the first forms of electricity, point-to-point telecommunications and qualify as early versions of social media platforms. Over time, phone service, convenience  and quality have steadily improved.  

In my youth during the early 1960s, I spent summers visiting relatives with farms in Wisconsin who had phones connected on “party lines” (several phone subscribers on one circuit).  When picking up a phone connected with a party line, your neighbor might be having a conversation in progress. If  a conversation was taking place  you could politely interrupt and request to use the phone for urgent business. Today, phone service has become so advanced that it is taken for granted as a form of personal utility. 

In 1925, Bell Telephone Laboratories were created from the merger of the engineering department of American Telephone & Telegraph (AT&T) and Western Electric Research Laboratories.  Ownership of the labs was shared evenly between the two companies; in return, Bell Laboratories provided design and technical support for Western Electric’s telephone infrastructure used by the Bell System. Bell Labs completed the symbiotic relationship for the phone companies by writing and maintaining a full-spectrum of technical manuals known as Bell System Practices (BSP).     

 

An Invisible Bridge From Point A To Point B

Bell Laboratories instantly began developing and demonstrating for the first time, telecommunication technology, which we now depend on for economic growth and to hold our social fabric together. Bell accomplished the first transmitting of a long-distance, 128-line television images from New York to Washington, D.C. in 1927. This remarkable event ushered in television broadcast, creating a new form of mass-multimedia. Now people could gather together in the comfort of their homes and witness… live news reports, hours of entertainment and product advertisements, which helped to stimulate consumer spending in a growing economy. Radio astronomy’s powerful space exploratory telescope, was developed through research conducted by Karl Jansky in 1931. During this decade, Bell lab’s George Paget Thomson was awarded the Nobel Prize in physics for his discovery of electron diffraction, which was a key factor for solid-state.

The Forecasting Power Of Numerical Data

An important component of renewable energy is the photovoltaic cell, which was developed in the lab during the 1940s by Russell Ohl. A majority of the United States’ statistician superstars, such as W. Edwards Deming, Harold F. Dodge, George Edwards, Paul Olmstead and Mary N. Torrey all came from Bell Labs Quality Assurance Department. W. Edwards Deming’s genius would later  go on to help revitalize Japan’s industry and be used in Ford Motors’ successful, quality control initiatives in the 1980s.

W. Edwards Deming

The U.S. government used Bell Labs for a series of consulting projects relating to highly technical initiatives and for the Apollo program. Several Nobel Prizes have been awarded to researches at the laboratory, adding to its fame and growing prestige. In the 1940’s many of the  Bell Labs were moved from New York City to nearby areas of New Jersey. ……………………………….Replica of the first transistor

Inventors of the transistor, l. to r. Dr. William Shockley, Dr. John Bardeen, Dr. Walter Brattain, ca. 1956
Courtesy Bell Laboratories

Smaller Is Better In The World Of Electronics

Perhaps Bell Laboratories most marvelous invention was the transistor invented on December 16, 1947. Transistors are at the heart of just about all electrical devices you’ll use today. These crucial artifacts transformed the electronics industry, by miniaturizing multiple electronic components used in an ever-expanding array of products and technical applications. Transistor efficiencies also greatly reduced the amount of heat in electronic devices, while improving overall reliability compared to fragile vacuum tube components. Once more, the labs’ select team of scientists was rewarded  with the Nobel Prize in Physics, for essential components of telecommunications.  

The mobile-phone was also created in 1947, with the labs’ commercial launch of Mobile Telephone Service (MTS) for use in automobiles. Some 20 years later, cell phone technology was developed at Bell and went on to become the ubiquitous form of communication it is today.                                                                                                            

 In 1954 the labs began to harness the sun’s potential, by creating the world’s first modern solar cell. The laser (Light Amplification by Stimulated Emission of Radiation) was dated in a 1958 Bell Lab, publication. The laser’s  growing spectrum of applications includes —  communications, medicine and consumer electronics.

A Perpetual Revolution In The Sky Unites The World

In 1962, Bell Labs pioneered satellite communications with the launch of  Telstar 1, the world’s first orbiting communication satellite. Telstar enabled virtually instant telephone calls to be bounced from coast to coast and all over the world. This development unified global communications and provided instant 24 – hour news coverage.      Bell Labs introduced the replacement of rotary dialing with touch-tone in 1963, this improvement vastly expanded telephone services with — 911 emergency response, voice mail and call service capabilities.

The image used in Byte Magazine for an article on VM2 assembly language. Photo-illustration by: David A. Johanson © All Rights

A New Distinct Language For Harnessing Machines

It’s been greatly underreported that Unix operating system, C  and C++ programing languages, essential for use in Information Technology (IT), were all created within Bell Labs. These crucial computer developments were established between 1969 -1972, while C++ came later in the early 1980s. C programing was a breakthrough as a streamlined and flexible form of computer coding, making it one of the most widely used in today’s programing languages. Unix enabled comprehensive networking of diverse computing systems, providing for the internet’s dynamic foundation. Increasingly, Bell Laboratories inventions were transforming and expanding the frontiers of micro-computing, which helped to make personal computing possible.                                                                         In 1980, Bell Labs tested the first single-chip 32-bit microprocessor, enabling personal computers to handle complex multimedia applications.

A major corporate restructure of AT&T, the parent company of Bell Laboratories, was ordered  by the U.S.  Federal government in 1985, to split-up its subsidiaries as part of a  divestiture agreementThis event proved to be an example of over regulation, which severed important links for funding technology R&D projects. Although AT&T previously had an economic advantage with a monopoly in the telephone industry, it allowed for necessary funding of Bell R&D labs.  Indirectly, U.S. tax payers made one of the best investments by subsidizing the foundation for our current telecommunication and information technology infrastructure.

AT&T Bell Laboratories became AT&T Labs official new name in 1996, when it  became part of Lucent Technologies. Since 1996, AT&T Labs have been awarded over 2000 patents and has introduced hundreds of new products. In 2007, Lucent Bell and  Alcatel Research merged into one organization under the name Bell Laboratories. Currently, the Labs’ purpose is directed away from scientific discovery and focussed on enhancing existing  technology, which is intended to yield higher financial returns.

.

Pause & Reflect: Questions for continuous learning part 1.

1.) What were the first forms of electrical, point-to-point telecommunications?

2.) What revolution was taking place when early forms of telecommunications were invented and name at least two technology innovations?

3.) Define the word technology?

5.) Who founded Bell Research and Development Labs?

7.) Name at least two developments which Bell Labs were awarded Nobel Prizes in?

6.) Pick one Bell Lab invention, which you believe was most important for helping develop modern telecommunications or personal computing.

Any Sufficiently Advanced Technology Will Appear As Magic.                                                     — Arthur C. Clarke

.

Advance Technology Takes Root In The West

In the first half of the 20TH Century, Bell Labs’ dazzling R&D creations aligned seamlessly to establish a solid foundation for telecommunications. Most of the Labs’ bold research had been conducted in the industrialized, Eastern portion of the United States. By the 1950s, new developments and evolving industries on the West Coast were benefiting from Bell’s technological inventions. Palo Alto’s, Stanford University research facilities, south of San Francisco, acted as a magnet for pulling in corporate transplants— most notably  IBM, General Electric and Eastman Kodak. In 1970, XEROX Corporation of Rochester, New York established a research center known as—Xerox PARC (Palo Alto Research Center Incorporated). PARC’s impact in R&D would soon be felt,  acting as a stimulating catalyst for personal computing and information technology development.  

 Creative Sanctuary For Nurturing Bold Ideas

Jack GoldmanChief Scientist at Xerox enlisted physicist Dr. George Pake, a specialist in nuclear magnetic resonance to help establish a new Xerox research center. Selecting the Palo Alto location gave the scientist greater independence and freedom than was possible near its Rochester headquarters. The location also provided huge resource opportunities for selecting talent pools of leading engineers and scientist from the numerous research centers located in the Bay Area. Once the West-Coast lab had a foothold, it became a sanctuary for the company’s creative misfitspassionate science engineers who were determined to create boldly. One of the few downsides for the new facility’s location was—less opportunities for lobbying and promoting critical breakthrough developments to top management located a continent away.

XEROX PARC had an inspiring creative influence, along with universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds.

Premier Unveils The Future Of Personal Computing Tools

XEROX PARC, discovered a target rich environment of ideas from  Douglas Engelbart, who worked at Stanford Research Institute (SRI) in Menlo Park. Engelbart gave the Mother of  all personal computing presentations in December of 1968, — astonishing the computer science audience with a remarkable debut of: the computer mouse, hyper text, email, video conferencing and much more.

Bitmap graphic, graphical user interface (GUI), which provides window like graphic features and icon objects — are just a few of the revolutionary concepts developed at PARC for personal computing. The list of  PC  innovations and developments continues with laser printers, WYSIWYG text editor, InterPress (prototype of Postscript) and Ethernet as a local-area computer network — inspiring PARC Universal Packet architecture, which resembles today’s internet. Optical disc technologies and  the LCD, were developed by PARC material scientist adding yet more to its diverse technology portfolio.  


The Shape Of Things To Come

 Xerox PARC’s R&D, efficiently blended these vital new technologies and leveraged it all into a personal computer, workstation, called  “Alto.” The futuristic Alto, was light-years ahead of its 1973 debut—bundled with a dynamic utility including: a mouse, graphical user interface and the connectivity of Ethernet. Interest in this revolutionary PC wonder kept expanding as countless demonstrations were given to the legions of intrigue individuals. The increasing demand for witnessing the power of PC computing was telegraphing the need for a new consumer market. For the first time, a “desktop sized computer” could match the capabilities of a full-service print shop.

Advance technology always comes with a hefty price tag, and the Alto was no exception, making it beyond reach of most consumers. Despite a high price-point — prestige and enthusiasm for Alto grew — as did admiration for the bold new world of Apple Computers and of its superstar founder — Steve Jobs.

Xerox Alto -1973 Was this the apple in Steve Job’s eye? It certainly was the first personal computer, which included most of the graphic interface features we recognize today.

Torch Of The Titans Lights New Horizons

By 1979, Apple was beginning to advance its own user-friendly interfaces with the development of the Lisa and Macintosh personal computers. Both products featured screens with multiple fonts, using bitmap screens for blending graphics and text. There were Apple graphics engineers  associated with Xerox PARC — either through former employment or in connection with Stanford University. Apple engineers aware of advances made in graphic interfaces with PARC’s ALTO, prompted Steve Jobs to have a parlay with PARC. In late 1979, Steve Jobs with his Apple engineering entourage arrived to view an AlTO demonstration at Xerox’s facilities. The  meeting’s outcome proved Jobs’ was a master of showmanship and marketing JudeJitsu by not disclosing a previously negotiated, sizable investment from Xerox’s venture capital group

Gravitational forces began shifting in favor of Steve Jobs and Apple Computer to capitalize on the market potential for personal computing. PARC computer engineers and scientist clearly understood the economic potential of an information business they help  build… but Xerox top executives certainly did not.  Xerox had a history of dominating the lucrative copy machine market — it was the business model corporate decision makers were comfortable with and they would not risk venturing very far from.  Most of PARC’s personal computing developments experienced the same frustrating fate of withering on the vine —  allowing for lucrative opportunities to go for bargain rates to new companies like Apple Computers.

Apple’s alchemy of — perfect timing, creative talent and visionary insight quickly aligned towards harnessing information technology products for an emerging market convergence. The creative inspiration and marketing savvy, which Steve Jobs’ applied towards personal computing—created  seismic ripple effects, which we’re still experiencing today.

Nothing Ventured, Nothing Gained  

Recently, there’s been a handful of media and tech industry critics, siting undeserved shortcomings of Bell Labs and Xerox PARC.  Too often, corporate R&D labs are faulted for not fully marketing their technology developments or capitalizing on scientific inventions. Rarely mentioned is the research & development lab’s purpose or mission of innovation, which is directed by the parent company’s strategic goals. Failing to understand the reality of this relationship, detracts from the technological importance and diminishes the accomplishments of these remarkable engineers and scientists. Lost in the critics hindsight, is the titanic obstacles facing the marketing, manufacturing and distribution of innovative products.  

Thrilling technical breakthroughs are what grab headlines — rarely are the successful efforts of corporate marketing or brilliant production logistics recognized or mentioned. It’s a disconnect to judge a R&D’ lab’s success completely  on the financial returns of its inventions.

The laser printer’s success, in particular, should erase the myth that Xerox PARC miss-managed all of its developments. Gary Starkweather, a brilliant optical engineer for Xerox PARC, developed the laser printer. Starkweather had pitched battles with Xerox management over promoting the laser printer, but eventually he triumphed and the laser printer went on to earn billions of dollars — enough to repay the investment cost of Xerox PARC several times over. Eventually Starkweather sensibly moved on to greater opportunities when Steve Jobs offered him a job in Cupertino. 

Brilliant R&D technology, requires an equally creative or open-minded group of executives for  converting technology innovation into a marketable product.  These decision makers must maintain iron-wills and courage to shepherd the technology product through its entire volatile development process. IBM’s iconic 305 RAMAC, the first commercial ‘super computer,’  is a classic example of a product development challenge. Introduced in 1956, the RAMAC featured a hard disk drive (HDD) and stored a — whopping five megabytes of data. Apparently, the HDD storage capacity could’ve been expanded well beyond the 5MB, but was not attempted because — IBM’s marketing department didn’t believe they could sell a computer with more storage.                    

IBM 305 RAMAC — first commercial computer to use a hard disk drive in 1956.

R&D Labs take creative risk in developing new ideas, most of these developments won’t make it to market, but that’s the price of creativity. Using intuition for taking risks and knowing some failure is necessary to pave the road toward successful discoveries — builds confidence in trusting one’s creative resources. So often, the creative-process is misunderstood and undervalued in our society’s perceived need for instant control and results. In the past, I’ve personally witnessed this attitude reflected in our educational system, however the viewpoint is  progressively shifting to realize the value of the creative-process.

Steve Jobs and Apple Computers are a good illustration of a company, which traditionally emphasized and embraced the creative spirit. Creative employees are considered the most valued resource at Apple as they are encouraged to nurture their creative uniqueness. Shortsighted emphasis on quarterly results, which has affected most of American business culture, is refreshingly absent from Apple’s overall mindset, allowing for more sustained and successful business initiatives.

Where Have All The R&D Labs Gone — Innovation VS Invention

The era of industrial, ‘closed inventive’ research & development labs — have faded into the background of yesterday’s business culture. Internal silos, once the proprietary norm, have been day-lighted to allow fresh ideas and collaborative efforts to circulate.  For the past 10 years, corporations have steadily reversed their long-term, pure scientific research in favor of  efforts towards quicker commercial returns. In 2011, Intel Corporation, dropped its  ’boutique’ research lablets‘ in Seattle, Berkeley and Pittsburgh  — opting for academic research to be conducted at university facilities. Intel continues to maintain its more profit oriented Intel Labs. This industry strategy repeatedly cloned itself within the corporate research world, as it is far easier to realize a profit from innovation than it is from pure invention.

Perhaps the golden-age of great research & development labs have run their course — but not before replacing the analogue, industrial era technology, with a digital one. A century ago, using creative, innovative and bold scientific vision, Bell Labs set the standard for future R&D labs. Xerox PARC, helped to extend Bell Labs’ marvelous inventions and innovations with a solid platform of creative research for developing mass markets in the postmodern telecommunications and personal computing of today.  ~

Pause & Reflect: Questions for continuous learning – part 2.

1.) Name the parent company (based in Rochester New York) and its research and development lab, which moved into California’s Bay Area in 1970?

2.) What was the  product (used for duplicating documents), which this New York based company had made its fame and fortune on?

3.) Give at least two reasons why this R&D lab was so inventive?

4.) What stop the lab’s parent company, which developed the first commercialized personal computer from realizing more profits from its inventions?

5.) What was the name of both the young, iconic tech entrepreneur and his company (named after  a red fruit) who was able to creatively use and market early Silicone Valley PC innovations?

6.) What’s the difference between invention and innovation?

7.) In your opinion, who were the top 10 inventors of all time and how did they make your top 10?

.

References

wp- CREATIVE COMMUNITIES v5.indd
Bell Labs – Wikipedia, the free encyclopedia
Bell Labs
Telstar 1: The Little Satellite That Created the Modern World 50 Years Ago | Wired Science | Wired.com
Was Bell Labs Overrated? – Forbes
Top 10 Greatest Inventors in History | Top 10 Lists | TopTenz.net
History of Lucent Technologies Inc. – FundingUniverse
Volatile and Decentralized: The death of Intel Labs and what it means for industrial research
Inventive America | World | Times Crest
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
http://www.westernelectric.com/history/WEandBellSystemBook.pdf
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
HistoryLink.org- the Free Online Encyclopedia of Washington State History
Xerox PARC, Apple, and the Creation of the Mouse : The New Yorker
1956 Hard Disk Drive – Disk Storage Unit for 305 RAMAC Computer
IBM 305 RAMAC: The Grandaddy of Modern Hard Drives
WSJ mangles history to argue government didn’t launch the Internet | Ars Technica
The Industrial Revolution: A Timeline
A History of Silicon Valley
The Tinkerings of Robert Noyce

XEROX PARC had an inspiring creative influence, along with a brilliant universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds

For the Archives

chronicles of the everyday

OOAworld

Movie, Photos, Writing, Stories, Videos, Animation, Drawings, Art and Travel

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Via Lucis Photography

Photography of Religious Architecture

Daring to Live in Love!

The Alternate Economy

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Eric Warren

Telling stories through words and images.

%d bloggers like this: