Archive | Political leadership RSS feed for this section

The Environment, our Earth’s Lost Frontier?

22 Apr

 

Arctic_Tundra_Oil_Field_e1003

(On the left horizon, hydrocarbons are being released into the air, blemishes an otherwise clear arctic day.)

Multimedia eLearning by: David A. Johanson © All Rights

All Roads Lead to Nowhere

Early in my career as a photographer I received assignments which took me above the Arctic Circle. Construction companies and architects working for oil companies in Alaska’s North Slope hired me to photograph their on going developments. At that time the Prudhoe Bay oil field’s production had peaked due to years of sustained extraction. A new oil field near the Kurparuk River, west of Prudhoe Bay was the site I was sent to. The Kuparuk oil field is the second largest oil field in North America by area, and traveling by aircraft was the way I moved from site to site.

Roads and construction sites above the arctic circle, rely on heaps of gravel placed over the tundra’s surface to prevent them from sinking into the earth when the ground thaws. Traveling less than 100 feet off the tundra, at 150 miles per hour, the pilot of the Hughes 500D helicopter races to horizon. The orange shelters at the edge of the road, is our intended destination. These metallic enclosures are used to pump hot steam down-into the wells, for recovering a thick slurry of oil, locked deep below the frozen tundra.

Envirn_Indust_BPP_e0014

Arctic_const_Workers_A1104

Environmental stock photography for a New Dawn.

Alaska, the Last Frontier  

Flying above an older oil facility, it can clearly be seen — the years of oil production have left Rorschach-like-ink-blots, splattered on the surrounding tundra. I have not been to the oil fields for many years, but I was told at the time — ‘oil companies were trying to cleaning up their act, while leaving a smaller footprint.’ I pray what I heard was true, but as we know — accidents both large and small continue to happen.

On a clear day while flying above vast stretches of tundra, we spotted a small monument, which marked where Will Rogers and Wiley Post had been killed in a plane crash. I spotted dozens of randomly placed metallic cylinders near the site. My bush pilot brought the airplane down for a closer look and cynically said, those are abandoned, empty 50 gallon oil barrels… known as —“Alaska’s state flower.

 Environmental stock photography for a New Dawn.

An old barn in the shadow of Anacortes oil refinery.
There’s something charming about old barns as they weather over the years. This one with its organic wood earth tones, is contrasted against the metallic cylinders of an oil refinery in Anacortes, about 70 miles north of Seattle, on the edge of Puget Sound. On April 2, 2010 five workers were killed at this oil refinery as an explosion and fire ripped through part of the refinery.

EARTH Day seems to have more meaning as the impact of global warming, seismic and volcanic activity focuses our attention on the big picture.

Environmental stock photography for a New Dawn.

Our world is delicately balanced, spinning through space, with us all aboard along for the journey. At least one day, one week, out of a busy calendar year, we’re asked to give homage to our planet by being aware of its’ environment. In honor of this day, I’m sending out photographs and prose that reflect current events affecting our world’s environment.

30756_1424678490440_7205732_n

Earth Day 2010

“One World, One Planet.”
A fascinating, outdoor setting, with an incredibly diverse ecosystems is the Rainforest of the Olympic National Forest. It was a late summer day when I hiked down form Lake Osset, to where the rainforest meets the Pacific Ocean. This area has never been logged, the old growth forest here stands as it has for thousands of years.

After setting up a tent I walked along a trail leading to a lush meadow. A twig snapped a few feet away from me, revealing two unusual looking deer, grassing in the tall grass. Never have I encountered wildlife, where if I desired, could reach out and touch it. The deer could plainly see me; yet they made no effort to scramble away or even conceal themselves. The reason this wildlife seems tame is that they reside within a remote National park, where no hunting is allowed.  Slowly, I raised my camera loaded with my favorite Kodachrome transparency film. As I began to take a series of photos, I noticed unusual patterned markings on the deer’s body.  Refocusing my lens, amazingly, what appeared was a map of the earth, patterned on the deer. Last year I scanned the transparency, then enhancing it with Photoshop, the world continents clearly revealed themselves in what I’ve themed
– “One Planet, One World.”

Cabin_June_27BPP_2010_348

Have you ever gone back to a place and found what you had once treasured was missing? The longing for beauty, which once was, is a reoccurring theme used to select many photos in this essay.

Pearl_Harb_VC_BPP_a1406

Earth Day 2010

“Paradise Lost” –
The enchanting scene with a man gazing into the pools of water is from Whatcom Falls. My college roommate sitting on the moss-covered boulders is Mark Nishimura, a fine-art photographer, originally from the state of Hawaii. Mark asked that I photograph him in a place that was reminiscent of the waterfalls back home on Ohau. I used a Hasselblad and slow speed transparency film to help capture the dynamic range of shadows and highlights. This was one of my favorite places to photograph when I attended school at Western Washington University, in Bellingham. Many students would spend summer afternoons cooling off, diving and swimming amongst the deep pools of water. A short walk into Whatcom Park, placed you in a lush environment, under a thick canopy of evergreen trees, moss-covered vegetation with sounds of cascading waterfalls running throughout it.  Environmental Photography

Some years after this photo was taken, tragedy struck, instantly incinerating this charming environment. A refinery’s 16-inch fuel-line running next to the park, ruptured, spewing nearly 300 thousand gallons of gasoline into the creek. In an instant, the fuel ignited, creating a river of fire, which killed three youths fishing in the creek and sending a toxic vapor cloud six miles into the atmosphere. The fireball and plume of smoke was visible from Anacortes to Vancouver, B.C., Canada.  Now, ten years after the catastrophe, I plan to return to the falls and photograph the site with hopes that nature’s healing process is transforming it back to the way it use to be.

Environmental Photography

Environmental Photography

Environmental Photography

Earth Day 2014

“Paradise Found” –
I remember a photography teacher I had in college took us to a beach near Chukanut Drive. When he gave out the assignment, most of the class groaned; we were to pick a spot on the beach, stay within a 25-foot diameter and shoot a series of photos to tell a story. Most of us wanted to take our cameras and explore what the entire beach had to offer. Surprisingly, it was one of the best assignments I was ever given in school; because it broke the stereotype about how you were suppose to see. Within that small domain we discovered, a whole universe was waiting to reveal itself before the camera lens. That photography lesson has stuck with me since, although world travel is a passion, I realize that I really didn’t have to go any farther than my backyard to find great images and no matter what, if resourceful, amazing subjects can be found everywhere.

My home’s back yard is like an outdoor studio full of indigenous plants, birds and amphibians. We avoid using pesticides and only use natural fertilizers on the yard and garden. One afternoon I found this charming tree frog sitting on a leaf, warming itself in the sunshine. With a macro lens on my camera, I was able to get within inches of the frog and let the background merge into soft abstract forms. The photo makes me smile whenever I see it because it reminds me, I never have to go far to reconnect with nature.

Environmental Photography

On a moonlit night, traveling the back-roads of Washington and Oregon —
we found countless sentinels standing guard against the cold breeze of darkening skies.

Environmental Photography                  

The Future is Now…
Working tirelessly with the wind, turbines spin against the moon backdrop, producing ‘clean energy’ for the Pacific Northwest. Throughout the Americas and many other places in the world, the tide is turning as we move more towards wind and solar for a clean, renewable energy source.

World_box_BPP_et424

Web Links For Earth Day 

http://abclocal.go.com/wls/story?section=news/local/illinois&id=9511926

http://newyork.cbslocal.com/2014/04/22/tri-state-area-commemorating-earth-day-with-series-of-events/

http://www.earthday.org

http://news.nationalgeographic.com/news/2014/04/140421-earth-day-2014-facts-environment-epa/

http://www.slate.com/blogs/bad_astronomy/2014/04/22/earth_day_2014_a_few_fun_facts_about_our_planet.html

 

 

THE MARTIAN PROPHECIES: Earth’s Conquest Of The Red Planet

12 Mar

Mars Frontier series

Early Mars terraforming site inspected by an American first-generation colonist.
Essay, eLearning program, and multimedia content by: David Anthony Johanson © All writing and photography within this program (unless indicated) was produced by the author.
If you would like to see this essay in an alternative graphic format please visit our Science Tech Tablet site at: http://bigpictureone.wordpress.com/2014/03/04/the-martian-prophecies-earths-conquest-of-the-red-planet/
Fu-tur-ism                                                                                                                               noun
1. Concern with events and trends of the future or which anticipate the future.
Any sufficiently advanced technology is indistinguishable from magic. — Arthur C. Clarke
.
How Earth Conquered Mars And Successfully Colonized The Red Planet
March 2054

Mars Frontier series

.

.

.

The Evolutionary Mastery Of Mars
In a forty-year period, the march towards making Mars inhabitable, astonished the most optimistic futurist. A sequence of technological events and economic opportunities (commonly known as the Third Industrial Revolution) converged seamlessly, allowing for safe and efficient journeys to the fourth planet from our Sun. Now, human life has sustained itself and is beginning to thrive on Martian soil.
On Earth, three decades into the third millennium, unstable global weather patterns caused by environmental abuse to our oceans, created extreme ripple effects with appalling famines and droughts. Then, suddenly a horrific rain of fire appeared as a sequence of catastrophic meteorite strikes plagued Earth— hastening humanity’s efforts to reach for the red planet. Of all the planets in our solar system — Mars has proven the best hope as a lifeboat and as a refuge for life taking hold.
Collaboration from the World’s nations, aligned rapidly to expand the colonies beyond Earth’s low-orbit. These outposts are in a stable formation at Sun-Earth Lagrangian Points:  L2, L4,  L5 and beyond. The various sites are used to support manufacturing, exploration and asteroid mining operations. Once established, they became “stepping-stones” towards Mars. Distant supply and launch stations are currently expanding at Sun-Mars Lagrangian points, circulating Mars.

mars-map

Triumph Through Large Scale Asteroid Mining 
After the first three decades of daring space exploration in the late Twentieth Century, momentum was lost from lack of compelling mission. Chemical propulsion system limitations and lack of aerospace manufacturing beyond Earth’s orbit, slowed space exploration’s progress. Major superpowers lacked funding and political will to achieve great advances beyond low Earth Orbit.
As the Twenty-First Century progressed, collaboration of prime aerospace companies Boeing and Space X, developed, hybrid launch vehicles to accelerate humanity’s expanded presence in space. Private commercial ventures determined a great potential existed for mining valuable resources from near Earth asteroids and the Moon. The first company to successfully begin asteroid mining were Planetary Resources, with funding provided by wealthy technology luminaries.

Mars Frontier series

 

.

.

.

.

.

.

.

.

Mars Frontier series

.
Three-D Printing In Space – A Bridge To Infinity 
Early in the Twenty-first Century, new advanced technological tools were developed for flexible and efficient manufacturing. After revolutionary 3-D printing operations took hold in space, opportunities expanded rapidly to develop massive infrastructure beyond Earth’s orbit. Three-D printing devices made prefabrication of immense living and working sites possible on the Moon and various stationary points well beyond Earth’s gravitational influence.

.

Three-D printing for manufacturing space-station stepping-stones
.
Beyond Earth’s Orbit — Islands In Space
As the population of human enterprises rapidly expanded into deep space, exploration of Mars became practical and irresistible.
Using a spectrum of cybernetic applications, including artificial intelligences (AI), atomically precise manufacturing (APM) and 3-D printing provided cost-effective infrastructure manufacturing  to expand beyond Earth’s low orbit. The network of space station developments offers a growing population of skilled aerospace workers — dynamic living and work environments.
Molecular nanotechnology (MNT) produces an endless variety of manufactured goods for the inhabitants of interplanetary space. As the initial space stations quickly expanded and connected to one another, they became known as “Island Stations.” Adopting interplanetary codes for infrastructure support commonality is maintained for all inhabitants and guest visits by the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
A network of stepping stone islands, which initially were used to extend the reach of asteroid mining operations from stable points beyond a low Earth orbit, is essential for colonizing Mars.

Mars Frontier series

Approximately 10 million miles from Earth, a network of station islands is positioned as a gateway point to Mars. These station networks are mutually protected from solar storms/flares by their own artificial magnetosphere. Earth (blue dot) and its moon can be seen near the upper-center part of the photo.

Mars Frontier series

Revolution — Electro Magnetic Propulsion And Magnetic Shield Protective  Fields 
Revolutionary, electromagnetic propulsion systems, using super-cooled, conducting magnets and magnetoplasmadynamic (MPD) were developed for vastly superior performance over conventional chemical rockets. The time required to reach destinations such as Mars has been reduced significantly, by a factor of one year to less than two weeks. Initial funding from NASA and ESA, created a collaboration between Boeing, SpaceX and Virgin Galatic to produce these hybrid propulsion space craft. http://www.cbsnews.com/news/boeing-spacex-to-team-with-nasa-on-space-taxi/
The greatest threat to human space travel and colonization is from solar winds of magnetized plasma carrying protons and alpha particles, which can
Mars Frontier seriesbreak down DNA and lead to cancer. A magnetic coil shield system allows space craft protection from most harmful radiation by creating its own magnetosphere. This shielding system harnesses for universal applications to protect space station populations, inner planetary travelers and Martian colonies.
A high energy accelerator was developed on Mars using spectrums of solar energy to recreate a magnetic field to help produce a sustainable atmosphere.
Mars Frontier series
   An electromagnetic propulsion cargo ship as it begins entering a high energy state.

Mars Frontier series

 

Electromagnetic propulsion “asteroid lifter” encounters solar wind storm.   

star_lifter_bpp_a2054

solar_system_jpeg

NASA illustration.

evo_bio_424

Genetic Modification Through Astrobiology Provides Essential Benefits For Human Space Travelers
Evolutionary biology has provided advantages to meet the challenges of human travel into deep space.
The first generation of genetically modified humans was created to  limit the effects and risk from extended space travel. Microchip circuitry imbedded into tissue, gave humans expanded capabilities to assure space survivability, productivity, and flight operations. To combat muscle degradation from zero gravity-exposure, contractile protein levels were increased in muscle tissue.

.

Settlements On The Red Planet And Stages Of Terraforming
To survive solar radiation effects, early Mar’s settlers lived bellow the planet’s regolith (soil). Within less than a decade, the colonies developed their own localized magnetosphere, which became encapsulated environments within translucent domes — creating an atmospheric oasis. These aerodynamic structures offer shielding from dust storms and subzero temperatures. Now, an enriched quality of life on Mars includes ever-expanding domains of Earth like atmosphere for expanded development and life above the surface of the red planet.Meteor showers streaming above craters and cliffs during a Martian sunrise.
Meteor showers streaming above craters and cliffs during a Martian sunrise.

Mars Frontier series

Massive mirrors are fixed in orbit above Mars for reflecting warmth back onto its surface, to provide a more temperate climate. Reflected light directed at Martian polar ice caps and its Carbon dioxide atmosphere of CO2 helps to keep thermal energy near the planet’s surface. As a result, a thermal runaway greenhouse effect is created to help build a thicker atmosphere. Release of microorganisms on the red the planet dramatically accelerates production, for intensifying greenhouse gas expansion.
Directing small asteroids with rich concentrations of ammonia to impact nitrate beds on Mars, releases high volumes of oxygen and nitrogen. These highly controlled asteroid strikes are providing substantial positive results to help develop an enriched atmosphere.

French_man_Coule_BPP_aerp61

Nanotechnology is now employed on the surface of Mars and is dramatically altering landscape regions within various craters. Genetically modified plant forms are successfully taking hold and surviving some test environments. In conclusion, all of these achievements are creating a more Earth like climate, for efforts to terraform Mars.

.

Earth’s Sustainable Community On Mars
Self replicating machines using APM manufacturing allow infrastructure to develop at astonishing rates on the red planet. New scientific, engineering and mining communities are establishing themselves rapidly as they descend from orbiting stations and stationary platforms above the planet. The current population on Mars has surpassed 40,000 inhabitants and is projected to double within the next five-years.

Mars Frontier series

The form of governance adopted by the colonies on Mars is based on a nonpolitical and international form of cooperation.  Asteroid mining and APM manufacturing are the largest industries associated with the Mars colonies.

Mars Frontier series                

   .      

 Martian colonists celebration party for “Pioneer Days.” Martian sunset seen in the background, behind a massive protective atmospheric shield.

.

Fossil Bed Enigma Reveals We May Never Have Been Alone
Found only days ago in the Antoniadi Crater region, is evidence of a fossil and what appears to be human like footprints. Although this discovery may revolutionize our view of the red planet — we must wait for the samples to arrive on Earth to confirm what could be one of the greatest discoveries of all time.

Mars Frontier series

Discovery at a Martian archeological dig site — “we have never been alone.”

Mars Frontier series

.

.

.

.

.

.

Mars Frontier series

Perchance, the most fascinating evidence of preexisting intelligence of life on Mars, was discovered near the Antoniadi Crater. Enclosed within a geographic site is a source, which is emitting peculiar magnetic fields. Upon further analysis revealed, distinct patterns of what appears as a mysterious complex digital codex. After extensive review and evaluation using a network of 2020 Enigma Genisus Computing system interpreted it as audible, instrumental sounds accompanied by visual projections of humanoid syncopated movements.BoC video See Ya Later
Most perplexing is the referenced quantitative variables, suggest the site was or is a time capsule or possibly a time-portal. To see the reference audio and visual projection, click on the link below. https://www.youtube.com/watch?v=53bCaqz0zZA
Music soundtrack for the Martian Prophecies — Powered by Boards of Canada (you can open another web browser if you’d like to have the following music play while viewing this essay)
Solar System & Planetary travel, music  http://www.youtube.com/watch?v=3l_IMOweP0E
Martian pioneers’ celebratory music  http://www.youtube.com/watch?v=4jBzl–TN1Q   and or http://www.youtube.com/watch?v=PYEZueAelKc  
Music for terraforming Mars to   http://www.youtube.com/watch?v=qthHlLyvplg
A canopy of stars floats above the Monuments of Mars site, just as "Vesta 2"(support station) enters the view, reflecting solar light in its West-East orbital path.

Martian moonlight illuminates sculpted cliffs, as “Vesta II” (logistics platform) enters view —piercing the night sky with solar light reflecting off its West-East orbital path.

Facts Concerning Mars
One day on Mars = 24 hours 37 minutes and 22 seconds.
One year on Mars = 686.98 Earth days.
Average distance from Earth to Mars = 225 million kilometers.
The minimum distance from Earth to Mars = 54. million km.
The farthest distance from Earth to Mars = 401 million km.
Warmest temperature of Mars — 70 degrees F (20 degrees C) near the equator
Origin of the name Mars = Ancient Roman god of war and agricultural guardian
The calendar Month named after Mars = March
Links to Learn More About Mars
http://www.wired.com/wiredscience/2010/01/gallery-mars/
http://cbhd.org/content/whose-image-remaking-humanity-through-cybernetics-and-nanotechnology
http://www.jpl.nasa.gov/missions/
http://www.nasa.gov/vision/space/travelinginspace/future_propulsion.html
http://physicsworld.com/cws/article/news/2008/nov/06/magnetic-shield-could-protect-spacecraft
http://www.slate.com/blogs/quora/2013/09/12/outer_space_can_we_make_mars_or_venus_habitable.html
http://en.wikipedia.org/wiki/List_of_private_spaceflight_companies
http://www.forbes.com/sites/brucedorminey/2013/05/29/can-mars-be-terraformed-nasas-maven-mission-could-provide-answers/
http://en.wikipedia.org/wiki/Lagrangian_point
http://www.applieddefense.com/wp-content/uploads/2012/12/2001-Carrico-Sun-Mars_Libration_Points_And_Mars_Mission_Simulations.pdf
http://www.thespacereview.com/article/2305/1
http://blogs.discovermagazine.com/crux/2014/09/08/where-build-off-world-colonies/#.VGp-1BYexjk
http://www.nss.org/spacemovement/greason.html
http://web.mit.edu/sydneydo/Public/Mars%20One%20Feasibility%20Analysis%20IAC14.pdf
A list of over 400 essays on Mars http://www.123helpme.com/search.asp?text=mars

 

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]

What Chance Will America’s Youth Have In A Changing Global Economy?

17 Apr
The first STEM EXPO Fair held at Edmonds School District's new STEM Magnet School at MountLake Terrace HS in Washington State. The student is caring a rocket, which was used in a group presentation at the fair.

The first STEM EXPO Fair held at Edmonds School District’s new STEM Magnet School at       MountLake Terrace HS in Washington State. This rocket club student is caring a rocket, which was used earlier in a group presentation at the fair.

Multimedia eLearning program by: David Anthony Johanson © All Rights

The author is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. For an alternative graphic view of this program, please visit: https://bigpictureone.wordpress.com/2013/04/19/what-chance-will-americas-youth-have-in-a-changing-global-economy/ 

 

A big question asked by concerned people and industry leaders across the Nation is waiting for an answer… How will current and future generations stay competitive in an increasingly, complex, global economy? A high-performance education program involving a blend of Science, Technology, Engineering and Mathematics (STEM) — is promising solutions as its building momentum within post-secondary and kindergarten-through-grade 12 (K-12) education. 

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.

The dynamic learning created from STEM’s project based curriculum is contagious for a growing number of students. And the program’s appeal is spreading to parents, schools and corporate sponsors who are looking for ways to get involved in supporting technology learning through public education. Even the U.S. Congress solidly supports the critical initiatives driving STEM Education, which is mostly funded through the National Science Foundation (NSF.)

STEM Robotics team in action with their project

Enthusiasm and excitement was experienced by those viewing students’ technology project presentations.

A Basic Overview Of A STEM Magnet Program

By the 21st century, digital technology had transformed global industry and commerce by accelerating STEM related industries. The skill-sets, training and knowledge of entry-level applicants was falling behind. Standards for learning, used in our public educational system, were now becoming outdated. Nationally, educators needed a new, comprehensive learning approach to inspire, explore and motivate students’ achievement in the global dynamics of STEM.

Today, the Nation’s public schools place greater emphasis on introducing STEM related content to both teachers and students starting as early as grade school. This program strategy allows all students of varied backgrounds, ethnicities and socio-economic levels to gain access to learning projects associated with science and technology.

By presenting young students with thoughtful STEM lesson plans, they are more likely to engage in the discovery process of even the most technical subject matters. Entering middle school, students are learning accelerated levels of science and technology content, which helps them decide if they wish to enroll in a high school, offering a focused curriculum. The STEM Magnet Program pulls in a diversified population of students, engaged and motivated by their earlier learning experiences.

STEM_Fair_ESD_BPP_aq_68

 Evolution And Development Of STEM Education

Richard Blais, Chairman of the technology department for the Shenendehowa Central School District in Upstate New York, developed a curriculum in 1986, to support students’ interest in studying engineering. To enable enthusiasm and confidence in students, core courses included; pre-engineering and digital electronics, infused with energetic and interactive learning environments. The curriculum’s proven a success, attracted philanthropist, Richard Liebich, who partnered with Blais to set up, Project Lead the Way (PLTW.) 

Greg Schwab - Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair

Greg Schwab – Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair

Dr. Nick Brossoit Superintendent, Edmonds School District

Dr. Nick Brossoit Superintendent, Edmonds School District

Within 10 years of PLTW’s founding, a dozen high schools in New York State adopted the program. Within the next few years high schools in 30 states were using PLTW’sPathway to Engineering Program.” Soon after, PLTW was a major national program, which used innovative activities of project and problem-based assignments. Further adding to PLTW’s momentum and success was the enthusiastic support corporations showed by endorsing and contributing financial resources towards the program.  

Mark Madison  Director, Career & Technical Education

Mark Madison
Director, Career & Technical Education for Edmonds SD

STEM Education incorporated many successful PLTW learning strategies and programs. PLTW is still active in high schools today and plays an active role in STEM Education.  

STEM EXPO Keynote Speaker - Dr. Elaine Scott Director of Science & Technology Program UW Bothell

STEM EXPO Keynote Speaker – Dr. Elaine Scott, Director of Science & Technology Program, UW Bothell 

Mark Sanders’, 2009 STEMmania article in The Technology Teacher, cites the STEM acronym first being used in the 1990’s. The National Science Foundation (NSF) started using “SMET” as a reference for “science, mathematics, engineering and technology.” A department, program officer complained “SMET” sounded similar to “smut,” so “STEM” became the suitable replacement. It would take more than a decade for the public to recognize STEM’s referenced meaning.  

The support  and enthusiasm for STEM Education is displayed by an impressive turnout for the District's first STEM EXPO Fair.

The support and enthusiasm for STEM Education is displayed by an impressive turnout for the District’s first STEM EXPO Fair.

STEM_Fair_ESD_BPP_77_1 STEM_Fair_ESD_BPP_74 STEM_Multi_Tshirt_-E101

The Challenge Of Integrative Education: Transcending Barriers And Perceived Domains Found Within Science, Technology, Engineering and Mathematic Education

Perhaps the greatest test for a STEM Magnet Program will involve achieving the goal, of course/subject integration. As a career, technical and education (CTE) instructor, I’ve heard this complaint more than any other from students — ‘why do I have to learn this subject, it doesn’t relate to other things I’m learning or anything I’ll ever need to know!?’ In truth, all subjects and courses taught in school share dynamic connections, we as educators need to do more in helping students see their associations.   

STEM_Fair_ESD_BPP_ae_24 Core sciences and engineering education have traditionally maintained strict disciplinary lines, known as silos. This shortsighted disconnect is generally not found in industry, where the imperative is to find solutions which will “payoff” in the shortest amount of time. Industry’s necessity to cut through process for realizing greater profits is an important lesson plan for all STEM Programs. The realized profit for a student is — being taught how to quickly adapt new, comprehensive and sometimes-unconventional learning strategies to gain a competitive advantage.  STEM_Fair_ESD_BPP_ae_18

STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.

The STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.

Benefits/Advantages For Both Students And The Schools They Attend

Developing a STEM magnet program helps a school district align its resources towards assisting students preparing for college and universities, which specialize in related technical studies. An additional advantage the program offers a student pursuing a post secondary education is — an institution will most likely accept the applicant’s enrollment request based on the knowledge and technical skills achieved through a STEM Magnet Program.   

                  

STEM_Fair_ESD_BPP_87   STEM_Fair_ESD_BPP_ac_23   U.S. industries have increasingly cited the lack of qualified technical applicants they need as a reason not to hire more employees. The shortage of people with necessary STEM skills has motivated corporations to contribute their resources of funding, mentoring and sponsorship towards public education’s technology learning programs.

STEM_Fair_ESD_BPP_ah_6  

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

 

STEM_Fair_ESD_BPP_ac_35

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

STEM_Fair_ESD_BPP_104

STEM_Fair_ESD_BPP_1

Parents and community groups have eagerly supported STEM programs. Student’s parents are critical stakeholders who quickly realized the impact the program was having  — seeing impressive scholastic and attitude improvements with their children.

STEM_Fair_ESD_BPP_ae_17

STEM_Fair_ESD_BPP_ac_1

STEM Education Uses Progressive Learning Strategies To Develop Critical Learning And Self-Discipline Within Students 

STEM_Fair_ESD_BPP_ad_7

STEM Education attempts to accelerate student development by modifying the standard teacher-centered classroom with more independent learning. The curriculum encourages project-based learning, problem solving and discovery, which empower the students to engage their cognitive skills to find solutions. This form of learning develops greater self-confidence in students and it opens channels among the students themselves to interact thru peer-to-peer learning. These spontaneous collaborative activities are self-organized learning events and they naturally promote leadership within the group. It has been well documented, knowledge transferred from experience in peer-to-peer activities are highly successful forms of learning.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.

STEM_Fair_ESD_BPP_ab_15

  STEM_Fair_ESD_BPP_am_39 STEM_Fair_ESD_BPP_ac_20

Tangible Returns In Personal Development Through Teamwork And Leadership

Over the past five years I’ve had the opportunity to teach in a variety of classroom environments using a CTE curriculum. It’s remarkable seeing how engaged students are with learning their STEM subject matter. These same students are much more likely to openly contribute and share their ideas in a classroom discussion using the critical thinking skills they’ve learned to develop.

Most often, STEM classes are more like being in a college environment, requiring a minimum amount of classroom management, as the students are self-motivated to complete their assignments and move on to the next project. Generally the level of leadership development and volunteerism is noticeably higher in STEM classes due to the program’s emphasis on teamwork, self-confidence and academic achievement. These personal development qualities are valuable assets for students applying for college admission and later — when entering the career of their choice.

Craig DeVine - pre-engineering instructor, talks with his students near a 3-D printer

Craig DeVine – pre-engineering instructor, talks with his students near a 3-D printer

STEM_Fair_ESD_BPP_a3  

STEM_Fair_ESD_BPP_ad_15

Improving Forecast For Employment Opportunities Using STEM Education

As STEM Magnet Schools continue to place their graduates into secondary education, followed by the students’ successful careers in STEM related industries — STEM Education will help transform the American education landscape. If STEM Education can sustain its momentum, the future horizon looks bright for our youth to achieve economic opportunities on a global leveled playing field.   STEM_Fair_ESD_BPP_91 STEM_Fair_ESD_BPP_1 STEM_Fair_ESD_BPP_ae_12_1

Entrance to Mountlake Terrace High School -Edmonds School District's first STEM Magnet School

Entrance to Mountlake Terrace High School -Edmonds School District’s first STEM Magnet School

.

. . . . . .. .STEM_Fair_ESD_BPP_ad_18 . . ……..

STEM Education Terms & Definitions

CTE = Career Technical Education NSF – National Science Foundation PD&I = pedagogy referring to – purposeful design and inquiry PLTW = Project Lead The Way STEM = Science, Technology, Engineering & Mathematics  STEM Magnet School = A school with a concentration of STEM classes, which attracts students throughout a school district interested in enrolling in a STEM Program   STEM_Fair_ESD_BPP_ae_5

STEM Education Links

http://www.stemedcoalition.org/ Home The Future of Education / The history of STEM education in America. Handy infographic! What is STEM Education? PLTW | OUR HISTORY PLTW | STEM Education Curriculum for Middle and High Schools http://esdstem.pbworks.com/f/TTT%2BSTEM%2BArticle_1.pdf Home PBS Teachers | STEM Education Resource Center nsf.gov – National Science Foundation – US National Science Foundation (NSF) Siemens STEM Academy – STEM Education Has Arrived… Start Small, But Dream Big http://www.stemeducation.com/ STEM Resources | Early STEM Program Still Going Strong – STEM Education (usnews.com) What STEM Is–and Why We Care – STEM Education (usnews.com) https://education.uky.edu/STEM/sites/education.uky.edu.STEM/files/SEM%20604_syllabus_%20History%20of%20STEM%20Ed.pdf Historical Perspectives on STEM Education in Arkansas | Arkansas STEM Coalition http://www.fas.org/sgp/crs/misc/R42642.pdf STEM ES Home – STEM ES FAQs NSTA :: News Story

Is there a greater champion for keeping America viable as the World leader in technology and science, than Senator Maria Cantwell?

6 Jun

Late 1990’s photo-illustration to promote Real Audio and its affiliates. At that time: RA Vice President of Marketing , Maria Cantwell hired my multimedia services to create this futuristic, virtual reality view of Seattle.

Photos and essay by: David Johanson Vasquez © All Rights   Second—  Addition

The U.S. is in a must-win race, to continue as the clear leader of global competitiveness  in technology and science. No other stakes are higher or ensure greater returns for our nation’s security, economic health and cultural way-of-life.

Photo courtesy of NASA.

Senator Maria Cantwell of Washington State has a proven record of properly managing the resources of public and private sector technology.  Global leadership requires well-informed oversight, which can fully employ, the most recent developments of  science and technology.  Ms. Cantwell’s earlier career as a successful executive in an emerging media technology company, gave her exceptional tech industry qualifications. A functional knowledge of computer engineering provided her a proactive view of emerging, 21st-century Information Technology (IT).  The Senator serves on five Senate Committees; perhaps the most critical for the nation’s position in world leadership is the Commerce, Science & Transportation Committee.

Washington State is fertile ground for producing world leading, innovative technology companies.  Software development, Internet commerce, biotechnology and aerospace industries are the primary economic engines of the Pacific Northwest.  It’s fortunate for the State of Washington and the Nation, to have a representative who clearly recognizes the economic and technical potential of these dynamic industries.

Electricity, is, the lifeblood, which our current technologies rely on.  Electrical energy is not a luxury; it’s a necessity for our way-of-life, which society society takes for granted.  Vigilance from our national leaders is essential for protecting our crucial resources from natural and manmade disasters.

Cantwell’s first major accomplishment as a U.S. Senator began taking shape within the first days of being in office; by her focussing a national spotlight on deceptive energy market manipulations.  In December 2001, Enron—a onetime energy giant— filed for Chapter 11 bankruptcy, while laying-off thousands of its employees.  Enron had taken extreme advantage of deregulation within the energy industry.  Without legislative oversight the company was on a rampage of manipulating energy markets, while overcharging businesses and households millions of dollars.

In the 2005 Energy Bill, Senator Cantwell helped author provisions, which made it a federal crime to manipulate electricity or natural gas markets.  Cantwell also helped uncover evidence, which proved, ongoing deceptive schemes were used by Enron traders to target customers. With the energy company’s blatant deception made public, Senator Cantwell successfully stopped the bankruptcy court from forcing customers  in Washington State, to pay millions of dollars in “termination fees” for electricity which hadn’t been delivered.

Boeing 747 at Everett manufacturing facilities.

Affordable, reliable electricity was and remains today the essential resource, which allows dynamic industries to thrive in the Pacific Northwest.  Boeing aerospace, is a prime example, which could not exist without massive amounts of dependable electricity for its airline manufacturing.

Boeing’s flight line at Everett’s Paine Field.

The Senate’s Commerce, Subcommittee on Technology, Innovation and Competitiveness, has few Senators capable of engaging computer industry experts as Senator Cantwell demonstrated, with her IT background.  During hearings on High–Performance Computing Vital to America’s Competitiveness, Cantwell was able to facilitate important questions on supercomputing architecture and applications. The Senator also had the opportunity to introduce two industry witnesses from the Washington State, who gave examples of how these technologies were advancing research & development to support manufacturing.

High-performance computing are the latest concepts for maximizing the power of supercomputers and networks for advance scientific research and it’s rapidly being embraced by a variety of key industry sectors. These powerful computer systems reach trillions of calculations per second, enabling discoveries not possible with standard computers. High-level computers are now used in a number of applications such as: accurately forecasting weather fronts, DNA modeling and  National Security.

 Internet2, which is a next-generation Internet Protocol and optical network, has the bandwidth performance needed for transferring high-volumes of  data produced by supercomputers.  A new national network, Level 3 Communications can now transfer 100 Gbit/s, which is a 100-percent improvement over Internet2. These high-speed secure networks are primarily used by academic and medical research for universities, in many cases the collaborative R&D will eventually  find an industry application.

At the Senate’s subcommittee, witness, Michael Garret, Director, Airplane Performance for the  Commercial Airplane Division of the Boeing Company, described to Cantwell and the other Senators how high-performance computing dramatically changed Boeing’s aerospace design process. In one example, Garret shared how Boeing had saved 80-percent, in the number of wing designs for the new, 787 Dreamliner.

Boeing 787-Dreamliner preparing for its first “maiden flight,” at Paine Field, Everett Washington.

If our intention for the Nation is to remain a leader in science, technology and commerce, we need more representatives in the Senate,  such as Senator Cantwell.  Our national elected representatives must understand the current and future potential of these advanced computer systems—to keep America technologically, economically, and militarily viable.  Fortunately, we and our  Nation’s Senate have Cantwell to help enable critical question on how to retain our leadership through high-performance computing and a new spectrum of technologies. ~

Senator Cantwell at one of her fundraiser, sharing her views on technology and education.

It’s important I share with you that Maria Cantwell and I have been friends for many years.  She hired me to photograph her when she first ran for congress and generously credits my photography for helping her get elected.  When she latter became an IT executive, she again hired my multimedia services to help promote and market Real Networks in Seattle. I’ve included some photos of Ms. Cantwell at a May fundraising event with campaign supporters and close friends.

Ms. Cantwell being introduced by Jim Johanson at a fundraising event in Edmonds, Washington.

Senator Cantwell has agreed to answer a series of interview questions from me, on science and technology related issues. The format for the interviews has yet to be confirmed, but there will be at least a text version and possibly, a  video one as well on the ScienceTechTablet and BigPictureOne multimedia sites. The interviews will take place sometime over this summer. One of my questions will be related to a photo-essay I wrote this year on the current Solar Storm cycle, which will be peaking by 2013.  Specifically. her views will be asked of how ready we are—in comparison to the 1989 Solar Storm, which caused Hydro-Quebec’s power grid to crash and leave millions of its customers with no electricity.

I mentioned to  Cantell that the Science Technology Engineering & Math (STEM) Advisory for Edmonds School District, which I volunteer as a committee members, will launch a STEM Magnet school at Mountlake Terrace High School for 2012 -2013. The Senator was very enthusiastic with the news, as she is a big supporter of the education program. MLTH was also in her former district when she was a state representative, living in Mountlake Terrace. Questions on how we can attract and support more programs, such as STEM, will be on the interview list.

If you have a science or technology question which relates to the United States for Senator Cantwell, please write it down in the response section bellow this story or email me with your interview question. I will do my best to ask your questions with the time available for the interviews.

A gathering of friends and supporters with Senator Cantwell. From left to right: Jim Johanson. Patrick MacDonald – former Seattle Times music critic, Maria Cantwell, Carmen lisa Valencia, David A. Johanson

For the Archives

chronicles of the everyday

OOAworld

Movie, Photos, Writing, Stories, Videos, Animation, Drawings, Art and Travel

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Via Lucis Photography

Photography of Religious Architecture

Daring to Live in Love!

The Alternate Economy

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Eric Warren

Telling stories through words and images.

%d bloggers like this: