Archive | STEM Magnet School RSS feed for this section

The Latest Full Throttle Multimedia Video of Seattle From the R22 Beta Helicopter – Part 2 of 2

29 Nov

Multimedia video essay by: David Johanson Vasquez – © All Rights

BigPictureOne & ScienceTechTablet are dedicated sites for including excitement, experience & education in E-learning. For an alternative graphic format of this multimedia essay please visit: bigpictureone | Using photos, video & words to explore the Big Picture WordPress.com site

Have you ever traveled by helicopter and encountered a full-throttle-ride at a tree top-level? Part 2 of my Helicopter video series is now online for you to experience. There are valuable safety tips, aerial photo techniques, employment requirements for helicopter mechanics  as well as the ultimate joyriding aerial views of Boeing Field and Seattle!

Collaboration and Clear Communication

Clear communication and teamwork between helicopter pilots and flight mechanics is essential for aviation safety. Professional collaboration and working experience are also required between a pilot and photographer for ensuring successful photographic results. On the day of this video was shot our helicopter experienced technical issues, which needed repairs before completing the Port of Seattle’s aerial photo shoot. With solid communication between pilot and ground crews established, the repairs were completed as the fast and furious activity of aircraft went on all around us at one of the nation’s busiest international airports.

Video by: David Johanson –  © All Rights

Helicopter Rear Rotor Blades Can Be a Liability

A February 2007 Rotor & Wing Magazine article by Tim McAdams, used two tragic crash events involving helicopter aerial photography to illustrate potential hazards encountered from the helicopter’s rear rotor. In the article it reported, “the NTSB determined the probable cause as the pilot-in-command’s improper in-flight decision to maneuver at a low airspeed with a left quartering tailwind, which resulted in a loss of tail-rotor effectiveness.”  The investigation of these and similar crashes helped to create the FAA Advisory Circular AC90-9, that warns pilots of conditions which can cause loss of flight stability due to stress on rear rotors.

Under no circumstances should anyone including ground crews be near the helicopter’s rear rotor while the engine is on. The video shows why helicopter rotor blades are painted with bright patterns to warn of their potential danger.

Fast and Furious

Helicopter operations are virtually never boring and are the centers of major activity. See how the latest video in the series explores Seattle’s dynamic landscape, Boeing Field operations and helicopter safety.

 

REFERENCES: (Click on these sites to learn more on the subject)

Safety Around Helicopters

http://www.fs.fed.us/fire/av_safety/promotion/safety_alerts/IA%20SA%2011-03%20LTE%20Final.pdf

Rotor Hazards

Helicopter Hazards | Aeronautical Knowledge Handbook

Helicopter Landing Area Safety

Rotor & Wing Magazine :: Safety Watch: Loss of Tail Rotor Effectiveness

Tail rotor – Wikipedia, the free encyclopedia

The Kopp-Etchells Effect: Eerie Halo of a Helicopter’s Rotor Blades in a Dust Cloud – Neatorama

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0282087

The Spokesman-Review – Google News Archive Search

Robinson Helicopter Co.

Helicopters Northwest – Boeing Field

Intersting facts about the historic Smith Tower

HistoryLink.org- the Free Online Encyclopedia of Washington State History

Smith Tower – Wikipedia, the free encyclopedia

Walking Tours (Self-Guided) – Visiting Seattle – Seattle.gov

http://www.soundtransit.org/Documents/pdf/about/Chronology.pdf

Downtown (Central Business District) guide, moving to Seattle | StreetAdvisor

Columbia Helicopters

CH-47JA Helicopter | Helicopters | Kawasaki Heavy Industries, Ltd. Aerospace Company

Boeing CH-47 Chinook

Boeing: History — Products – Boeing CH-47 Chinook Rotorcraft

MD Helicopters MD 500 – Wikipedia, the free encyclopedia

Boeing: History — Products – Hughes OH-6 Cayuse/500 Military and Civilian Helicopter

Helicopter Safety | Flight Safety Foundation

http://drum.lib.umd.edu/bitstream/1903/1900/1/umi-umd-1880.pdf

King County International Airport/Boeing Field

Port of Seattle

 

Who Were the Titans of Telecommunication and Information Technology?

31 Aug The Titans of Technology
By: David Johanson Vasquez © All Rights

Multimedia Essay By: David Johanson Vasquez © All Rights – Second Addition – Series 1 & 2

— Inventions are rarely the result of just one individual’s work— but are created through collective efforts overtime,  from several individual’s observations, theories and experiments. Benjamin Franklin’s role in demystifying electricity, Michael Faraday’s discovery of “induced” current, Nikola Tesla and Guglielmo Marconi’s wireless radio communication… are just a few of the technology pioneers responsible for developing modern telecommunications. I regret not having the resources  for this essay’s inclusion of all men and women, whose’ discoveries made telecommunication and information technology possible.    

Definition of technology — “the systematic application of scientific or other organized knowledge to practical tasks.”  (J.K Galbraith)  “the application of scientific and other organized knowledge to practical tasks by… ordered systems that involve people and machines.” (John Naughton)

For an alternative graphic format on this program, please visit:  http://www.BigPictureOne.wordpress.com

Telecommunications took its first infant steps as the industrial revolution was rapidly compressing concepts of time and space. The first half of the 19Th Century witnessed modern societies using steam locomotive trains for mass transit and electronic communication through telegraph technology. Steamships shrunk the world by delivering capital goods, raw resources and people to remote locations within fractions of the time it took before. With the industrial revolution nearing its peak at the close of the century, a new communication, innovation was developed, which helped transform the modern age into a postmodern era. 

Inventor, Alexander Graham Bell’s Washington D.C. company, which developed the telephone, eventually evolved into a prime research laboratory. His vision for a R&D lab, created a foundation for the digital technologies of today. In the following century, another key, R&D technology titan— Xerox PARC  enters the stage, which helps to set in motion personal computing and expand the information technology revolution.

The steamship S.S. Empress of India near Vancouver B.C.
From the private collection of: David A. Johanson ©

Scottish born Alexander Graham Bell
from the collection of: Library of Congress

The French Technology Connection

A French, visionary government in 1880, recognized the importance of Alexander Bell’s invention, and awarded him the Volta Prize. A sum of 50,000 francs or roughly, $250,000 in today’s currency came with the honor. The funds were reinvested into research for use in education to enable knowledge on deafness. Growing investments to fund the creation of Bell Telephone Company on March 20, 1880 allowed for expanded research on recording and transmission of sound.

Can You Hear Me Now     telep_road_BPP_et110

The telegraph and telephone were the first forms of electricity, point-to-point telecommunications and qualify as early versions of social media platforms. Over time, phone service, convenience  and quality have steadily improved.  

In my youth during the early 1960s, I spent summers visiting relatives with farms in Wisconsin who had phones connected on “party lines” (several phone subscribers on one circuit).  When picking up a phone connected with a party line, your neighbor might be having a conversation in progress. If  a conversation was taking place  you could politely interrupt and request to use the phone for urgent business. Today, phone service has become so advanced that it is taken for granted as a form of personal utility. 

In 1925, Bell Telephone Laboratories were created from the merger of the engineering department of American Telephone & Telegraph (AT&T) and Western Electric Research Laboratories.  Ownership of the labs was shared evenly between the two companies; in return, Bell Laboratories provided design and technical support for Western Electric’s telephone infrastructure used by the Bell System. Bell Labs completed the symbiotic relationship for the phone companies by writing and maintaining a full-spectrum of technical manuals known as Bell System Practices (BSP).     

 

An Invisible Bridge From Point A To Point B

Bell Laboratories instantly began developing and demonstrating for the first time, telecommunication technology, which we now depend on for economic growth and to hold our social fabric together. Bell accomplished the first transmitting of a long-distance, 128-line television images from New York to Washington, D.C. in 1927. This remarkable event ushered in television broadcast, creating a new form of mass-multimedia. Now people could gather together in the comfort of their homes and witness… live news reports, hours of entertainment and product advertisements, which helped to stimulate consumer spending in a growing economy. Radio astronomy’s powerful space exploratory telescope, was developed through research conducted by Karl Jansky in 1931. During this decade, Bell lab’s George Paget Thomson was awarded the Nobel Prize in physics for his discovery of electron diffraction, which was a key factor for solid-state.

The Forecasting Power Of Numerical Data

An important component of renewable energy is the photovoltaic cell, which was developed in the lab during the 1940s by Russell Ohl. A majority of the United States’ statistician superstars, such as W. Edwards Deming, Harold F. Dodge, George Edwards, Paul Olmstead and Mary N. Torrey all came from Bell Labs Quality Assurance Department. W. Edwards Deming’s genius would later  go on to help revitalize Japan’s industry and be used in Ford Motors’ successful, quality control initiatives in the 1980s.

W. Edwards Deming

The U.S. government used Bell Labs for a series of consulting projects relating to highly technical initiatives and for the Apollo program. Several Nobel Prizes have been awarded to researches at the laboratory, adding to its fame and growing prestige. In the 1940’s many of the  Bell Labs were moved from New York City to nearby areas of New Jersey. ……………………………….Replica of the first transistor

Inventors of the transistor, l. to r. Dr. William Shockley, Dr. John Bardeen, Dr. Walter Brattain, ca. 1956
Courtesy Bell Laboratories

Smaller Is Better In The World Of Electronics

Perhaps Bell Laboratories most marvelous invention was the transistor invented on December 16, 1947. Transistors are at the heart of just about all electrical devices you’ll use today. These crucial artifacts transformed the electronics industry, by miniaturizing multiple electronic components used in an ever-expanding array of products and technical applications. Transistor efficiencies also greatly reduced the amount of heat in electronic devices, while improving overall reliability compared to fragile vacuum tube components. Once more, the labs’ select team of scientists was rewarded  with the Nobel Prize in Physics, for essential components of telecommunications.  

The mobile-phone was also created in 1947, with the labs’ commercial launch of Mobile Telephone Service (MTS) for use in automobiles. Some 20 years later, cell phone technology was developed at Bell and went on to become the ubiquitous form of communication it is today.                                                                                                            

 In 1954 the labs began to harness the sun’s potential, by creating the world’s first modern solar cell. The laser (Light Amplification by Stimulated Emission of Radiation) was dated in a 1958 Bell Lab, publication. The laser’s  growing spectrum of applications includes —  communications, medicine and consumer electronics.

A Perpetual Revolution In The Sky Unites The World

In 1962, Bell Labs pioneered satellite communications with the launch of  Telstar 1, the world’s first orbiting communication satellite. Telstar enabled virtually instant telephone calls to be bounced from coast to coast and all over the world. This development unified global communications and provided instant 24 – hour news coverage.      Bell Labs introduced the replacement of rotary dialing with touch-tone in 1963, this improvement vastly expanded telephone services with — 911 emergency response, voice mail and call service capabilities.

The image used in Byte Magazine for an article on VM2 assembly language. Photo-illustration by: David A. Johanson © All Rights

A New Distinct Language For Harnessing Machines

It’s been greatly underreported that Unix operating system, C  and C++ programing languages, essential for use in Information Technology (IT), were all created within Bell Labs. These crucial computer developments were established between 1969 -1972, while C++ came later in the early 1980s. C programing was a breakthrough as a streamlined and flexible form of computer coding, making it one of the most widely used in today’s programing languages. Unix enabled comprehensive networking of diverse computing systems, providing for the internet’s dynamic foundation. Increasingly, Bell Laboratories inventions were transforming and expanding the frontiers of micro-computing, which helped to make personal computing possible.                                                                         In 1980, Bell Labs tested the first single-chip 32-bit microprocessor, enabling personal computers to handle complex multimedia applications.

A major corporate restructure of AT&T, the parent company of Bell Laboratories, was ordered  by the U.S.  Federal government in 1985, to split-up its subsidiaries as part of a  divestiture agreementThis event proved to be an example of over regulation, which severed important links for funding technology R&D projects. Although AT&T previously had an economic advantage with a monopoly in the telephone industry, it allowed for necessary funding of Bell R&D labs.  Indirectly, U.S. tax payers made one of the best investments by subsidizing the foundation for our current telecommunication and information technology infrastructure.

AT&T Bell Laboratories became AT&T Labs official new name in 1996, when it  became part of Lucent Technologies. Since 1996, AT&T Labs have been awarded over 2000 patents and has introduced hundreds of new products. In 2007, Lucent Bell and  Alcatel Research merged into one organization under the name Bell Laboratories. Currently, the Labs’ purpose is directed away from scientific discovery and focussed on enhancing existing  technology, which is intended to yield higher financial returns.

.

Pause & Reflect: Questions for continuous learning part 1.

1.) What were the first forms of electrical, point-to-point telecommunications?

2.) What revolution was taking place when early forms of telecommunications were invented and name at least two technology innovations?

3.) Define the word technology?

5.) Who founded Bell Research and Development Labs?

7.) Name at least two developments which Bell Labs were awarded Nobel Prizes in?

6.) Pick one Bell Lab invention, which you believe was most important for helping develop modern telecommunications or personal computing.

Any Sufficiently Advanced Technology Will Appear As Magic.                                                     — Arthur C. Clarke

.

Advance Technology Takes Root In The West

In the first half of the 20TH Century, Bell Labs’ dazzling R&D creations aligned seamlessly to establish a solid foundation for telecommunications. Most of the Labs’ bold research had been conducted in the industrialized, Eastern portion of the United States. By the 1950s, new developments and evolving industries on the West Coast were benefiting from Bell’s technological inventions. Palo Alto’s, Stanford University research facilities, south of San Francisco, acted as a magnet for pulling in corporate transplants— most notably  IBM, General Electric and Eastman Kodak. In 1970, XEROX Corporation of Rochester, New York established a research center known as—Xerox PARC (Palo Alto Research Center Incorporated). PARC’s impact in R&D would soon be felt,  acting as a stimulating catalyst for personal computing and information technology development.  

 Creative Sanctuary For Nurturing Bold Ideas

Jack GoldmanChief Scientist at Xerox enlisted physicist Dr. George Pake, a specialist in nuclear magnetic resonance to help establish a new Xerox research center. Selecting the Palo Alto location gave the scientist greater independence and freedom than was possible near its Rochester headquarters. The location also provided huge resource opportunities for selecting talent pools of leading engineers and scientist from the numerous research centers located in the Bay Area. Once the West-Coast lab had a foothold, it became a sanctuary for the company’s creative misfitspassionate science engineers who were determined to create boldly. One of the few downsides for the new facility’s location was—less opportunities for lobbying and promoting critical breakthrough developments to top management located a continent away.

XEROX PARC had an inspiring creative influence, along with universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds.

Premier Unveils The Future Of Personal Computing Tools

XEROX PARC, discovered a target rich environment of ideas from  Douglas Engelbart, who worked at Stanford Research Institute (SRI) in Menlo Park. Engelbart gave the Mother of  all personal computing presentations in December of 1968, — astonishing the computer science audience with a remarkable debut of: the computer mouse, hyper text, email, video conferencing and much more.

Bitmap graphic, graphical user interface (GUI), which provides window like graphic features and icon objects — are just a few of the revolutionary concepts developed at PARC for personal computing. The list of  PC  innovations and developments continues with laser printers, WYSIWYG text editor, InterPress (prototype of Postscript) and Ethernet as a local-area computer network — inspiring PARC Universal Packet architecture, which resembles today’s internet. Optical disc technologies and  the LCD, were developed by PARC material scientist adding yet more to its diverse technology portfolio.  


The Shape Of Things To Come

 Xerox PARC’s R&D, efficiently blended these vital new technologies and leveraged it all into a personal computer, workstation, called  “Alto.” The futuristic Alto, was light-years ahead of its 1973 debut—bundled with a dynamic utility including: a mouse, graphical user interface and the connectivity of Ethernet. Interest in this revolutionary PC wonder kept expanding as countless demonstrations were given to the legions of intrigue individuals. The increasing demand for witnessing the power of PC computing was telegraphing the need for a new consumer market. For the first time, a “desktop sized computer” could match the capabilities of a full-service print shop.

Advance technology always comes with a hefty price tag, and the Alto was no exception, making it beyond reach of most consumers. Despite a high price-point — prestige and enthusiasm for Alto grew — as did admiration for the bold new world of Apple Computers and of its superstar founder — Steve Jobs.

Xerox Alto -1973 Was this the apple in Steve Job’s eye? It certainly was the first personal computer, which included most of the graphic interface features we recognize today.

Torch Of The Titans Lights New Horizons

By 1979, Apple was beginning to advance its own user-friendly interfaces with the development of the Lisa and Macintosh personal computers. Both products featured screens with multiple fonts, using bitmap screens for blending graphics and text. There were Apple graphics engineers  associated with Xerox PARC — either through former employment or in connection with Stanford University. Apple engineers aware of advances made in graphic interfaces with PARC’s ALTO, prompted Steve Jobs to have a parlay with PARC. In late 1979, Steve Jobs with his Apple engineering entourage arrived to view an AlTO demonstration at Xerox’s facilities. The  meeting’s outcome proved Jobs’ was a master of showmanship and marketing JudeJitsu by not disclosing a previously negotiated, sizable investment from Xerox’s venture capital group

Gravitational forces began shifting in favor of Steve Jobs and Apple Computer to capitalize on the market potential for personal computing. PARC computer engineers and scientist clearly understood the economic potential of an information business they help  build… but Xerox top executives certainly did not.  Xerox had a history of dominating the lucrative copy machine market — it was the business model corporate decision makers were comfortable with and they would not risk venturing very far from.  Most of PARC’s personal computing developments experienced the same frustrating fate of withering on the vine —  allowing for lucrative opportunities to go for bargain rates to new companies like Apple Computers.

Apple’s alchemy of — perfect timing, creative talent and visionary insight quickly aligned towards harnessing information technology products for an emerging market convergence. The creative inspiration and marketing savvy, which Steve Jobs’ applied towards personal computing—created  seismic ripple effects, which we’re still experiencing today.

Nothing Ventured, Nothing Gained  

Recently, there’s been a handful of media and tech industry critics, siting undeserved shortcomings of Bell Labs and Xerox PARC.  Too often, corporate R&D labs are faulted for not fully marketing their technology developments or capitalizing on scientific inventions. Rarely mentioned is the research & development lab’s purpose or mission of innovation, which is directed by the parent company’s strategic goals. Failing to understand the reality of this relationship, detracts from the technological importance and diminishes the accomplishments of these remarkable engineers and scientists. Lost in the critics hindsight, is the titanic obstacles facing the marketing, manufacturing and distribution of innovative products.  

Thrilling technical breakthroughs are what grab headlines — rarely are the successful efforts of corporate marketing or brilliant production logistics recognized or mentioned. It’s a disconnect to judge a R&D’ lab’s success completely  on the financial returns of its inventions.

The laser printer’s success, in particular, should erase the myth that Xerox PARC miss-managed all of its developments. Gary Starkweather, a brilliant optical engineer for Xerox PARC, developed the laser printer. Starkweather had pitched battles with Xerox management over promoting the laser printer, but eventually he triumphed and the laser printer went on to earn billions of dollars — enough to repay the investment cost of Xerox PARC several times over. Eventually Starkweather sensibly moved on to greater opportunities when Steve Jobs offered him a job in Cupertino. 

Brilliant R&D technology, requires an equally creative or open-minded group of executives for  converting technology innovation into a marketable product.  These decision makers must maintain iron-wills and courage to shepherd the technology product through its entire volatile development process. IBM’s iconic 305 RAMAC, the first commercial ‘super computer,’  is a classic example of a product development challenge. Introduced in 1956, the RAMAC featured a hard disk drive (HDD) and stored a — whopping five megabytes of data. Apparently, the HDD storage capacity could’ve been expanded well beyond the 5MB, but was not attempted because — IBM’s marketing department didn’t believe they could sell a computer with more storage.                    

IBM 305 RAMAC — first commercial computer to use a hard disk drive in 1956.

R&D Labs take creative risk in developing new ideas, most of these developments won’t make it to market, but that’s the price of creativity. Using intuition for taking risks and knowing some failure is necessary to pave the road toward successful discoveries — builds confidence in trusting one’s creative resources. So often, the creative-process is misunderstood and undervalued in our society’s perceived need for instant control and results. In the past, I’ve personally witnessed this attitude reflected in our educational system, however the viewpoint is  progressively shifting to realize the value of the creative-process.

Steve Jobs and Apple Computers are a good illustration of a company, which traditionally emphasized and embraced the creative spirit. Creative employees are considered the most valued resource at Apple as they are encouraged to nurture their creative uniqueness. Shortsighted emphasis on quarterly results, which has affected most of American business culture, is refreshingly absent from Apple’s overall mindset, allowing for more sustained and successful business initiatives.

Where Have All The R&D Labs Gone — Innovation VS Invention

The era of industrial, ‘closed inventive’ research & development labs — have faded into the background of yesterday’s business culture. Internal silos, once the proprietary norm, have been day-lighted to allow fresh ideas and collaborative efforts to circulate.  For the past 10 years, corporations have steadily reversed their long-term, pure scientific research in favor of  efforts towards quicker commercial returns. In 2011, Intel Corporation, dropped its  ’boutique’ research lablets‘ in Seattle, Berkeley and Pittsburgh  — opting for academic research to be conducted at university facilities. Intel continues to maintain its more profit oriented Intel Labs. This industry strategy repeatedly cloned itself within the corporate research world, as it is far easier to realize a profit from innovation than it is from pure invention.

Perhaps the golden-age of great research & development labs have run their course — but not before replacing the analogue, industrial era technology, with a digital one. A century ago, using creative, innovative and bold scientific vision, Bell Labs set the standard for future R&D labs. Xerox PARC, helped to extend Bell Labs’ marvelous inventions and innovations with a solid platform of creative research for developing mass markets in the postmodern telecommunications and personal computing of today.  ~

Pause & Reflect: Questions for continuous learning – part 2.

1.) Name the parent company (based in Rochester New York) and its research and development lab, which moved into California’s Bay Area in 1970?

2.) What was the  product (used for duplicating documents), which this New York based company had made its fame and fortune on?

3.) Give at least two reasons why this R&D lab was so inventive?

4.) What stop the lab’s parent company, which developed the first commercialized personal computer from realizing more profits from its inventions?

5.) What was the name of both the young, iconic tech entrepreneur and his company (named after  a red fruit) who was able to creatively use and market early Silicone Valley PC innovations?

6.) What’s the difference between invention and innovation?

7.) In your opinion, who were the top 10 inventors of all time and how did they make your top 10?

.

References

wp- CREATIVE COMMUNITIES v5.indd
Bell Labs – Wikipedia, the free encyclopedia
Bell Labs
Telstar 1: The Little Satellite That Created the Modern World 50 Years Ago | Wired Science | Wired.com
Was Bell Labs Overrated? – Forbes
Top 10 Greatest Inventors in History | Top 10 Lists | TopTenz.net
History of Lucent Technologies Inc. – FundingUniverse
Volatile and Decentralized: The death of Intel Labs and what it means for industrial research
Inventive America | World | Times Crest
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
http://www.westernelectric.com/history/WEandBellSystemBook.pdf
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
HistoryLink.org- the Free Online Encyclopedia of Washington State History
Xerox PARC, Apple, and the Creation of the Mouse : The New Yorker
1956 Hard Disk Drive – Disk Storage Unit for 305 RAMAC Computer
IBM 305 RAMAC: The Grandaddy of Modern Hard Drives
WSJ mangles history to argue government didn’t launch the Internet | Ars Technica
The Industrial Revolution: A Timeline
A History of Silicon Valley
The Tinkerings of Robert Noyce

XEROX PARC had an inspiring creative influence, along with a brilliant universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds

Is there a greater champion for keeping America viable as the World leader in technology and science, than Senator Maria Cantwell?

6 Jun real_audio_BPP_e116

Late 1990’s photo-illustration to promote Real Audio and its affiliates. At that time: RA Vice President of Marketing , Maria Cantwell hired my multimedia services to create this futuristic, virtual reality view of Seattle.

Photos and essay by: David Johanson Vasquez © All Rights   Second—  Addition

The U.S. is in a must-win race, to continue as the clear leader of global competitiveness  in technology and science. No other stakes are higher or ensure greater returns for our nation’s security, economic health and cultural way-of-life.

Photo courtesy of NASA.

Senator Maria Cantwell of Washington State has a proven record of properly managing the resources of public and private sector technology.  Global leadership requires well-informed oversight, which can fully employ, the most recent developments of  science and technology.  Ms. Cantwell’s earlier career as a successful executive in an emerging media technology company, gave her exceptional tech industry qualifications. A functional knowledge of computer engineering provided her a proactive view of emerging, 21st-century Information Technology (IT).  The Senator serves on five Senate Committees; perhaps the most critical for the nation’s position in world leadership is the Commerce, Science & Transportation Committee.

Washington State is fertile ground for producing world leading, innovative technology companies.  Software development, Internet commerce, biotechnology and aerospace industries are the primary economic engines of the Pacific Northwest.  It’s fortunate for the State of Washington and the Nation, to have a representative who clearly recognizes the economic and technical potential of these dynamic industries.

Electricity, is, the lifeblood, which our current technologies rely on.  Electrical energy is not a luxury; it’s a necessity for our way-of-life, which society society takes for granted.  Vigilance from our national leaders is essential for protecting our crucial resources from natural and manmade disasters.

Cantwell’s first major accomplishment as a U.S. Senator began taking shape within the first days of being in office; by her focussing a national spotlight on deceptive energy market manipulations.  In December 2001, Enron—a onetime energy giant— filed for Chapter 11 bankruptcy, while laying-off thousands of its employees.  Enron had taken extreme advantage of deregulation within the energy industry.  Without legislative oversight the company was on a rampage of manipulating energy markets, while overcharging businesses and households millions of dollars.

In the 2005 Energy Bill, Senator Cantwell helped author provisions, which made it a federal crime to manipulate electricity or natural gas markets.  Cantwell also helped uncover evidence, which proved, ongoing deceptive schemes were used by Enron traders to target customers. With the energy company’s blatant deception made public, Senator Cantwell successfully stopped the bankruptcy court from forcing customers  in Washington State, to pay millions of dollars in “termination fees” for electricity which hadn’t been delivered.

Boeing 747 at Everett manufacturing facilities.

Affordable, reliable electricity was and remains today the essential resource, which allows dynamic industries to thrive in the Pacific Northwest.  Boeing aerospace, is a prime example, which could not exist without massive amounts of dependable electricity for its airline manufacturing.

Boeing’s flight line at Everett’s Paine Field.

The Senate’s Commerce, Subcommittee on Technology, Innovation and Competitiveness, has few Senators capable of engaging computer industry experts as Senator Cantwell demonstrated, with her IT background.  During hearings on High–Performance Computing Vital to America’s Competitiveness, Cantwell was able to facilitate important questions on supercomputing architecture and applications. The Senator also had the opportunity to introduce two industry witnesses from the Washington State, who gave examples of how these technologies were advancing research & development to support manufacturing.

High-performance computing are the latest concepts for maximizing the power of supercomputers and networks for advance scientific research and it’s rapidly being embraced by a variety of key industry sectors. These powerful computer systems reach trillions of calculations per second, enabling discoveries not possible with standard computers. High-level computers are now used in a number of applications such as: accurately forecasting weather fronts, DNA modeling and  National Security.

 Internet2, which is a next-generation Internet Protocol and optical network, has the bandwidth performance needed for transferring high-volumes of  data produced by supercomputers.  A new national network, Level 3 Communications can now transfer 100 Gbit/s, which is a 100-percent improvement over Internet2. These high-speed secure networks are primarily used by academic and medical research for universities, in many cases the collaborative R&D will eventually  find an industry application.

At the Senate’s subcommittee, witness, Michael Garret, Director, Airplane Performance for the  Commercial Airplane Division of the Boeing Company, described to Cantwell and the other Senators how high-performance computing dramatically changed Boeing’s aerospace design process. In one example, Garret shared how Boeing had saved 80-percent, in the number of wing designs for the new, 787 Dreamliner.

Boeing 787-Dreamliner preparing for its first “maiden flight,” at Paine Field, Everett Washington.

If our intention for the Nation is to remain a leader in science, technology and commerce, we need more representatives in the Senate,  such as Senator Cantwell.  Our national elected representatives must understand the current and future potential of these advanced computer systems—to keep America technologically, economically, and militarily viable.  Fortunately, we and our  Nation’s Senate have Cantwell to help enable critical question on how to retain our leadership through high-performance computing and a new spectrum of technologies. ~

Senator Cantwell at one of her fundraiser, sharing her views on technology and education.

It’s important I share with you that Maria Cantwell and I have been friends for many years.  She hired me to photograph her when she first ran for congress and generously credits my photography for helping her get elected.  When she latter became an IT executive, she again hired my multimedia services to help promote and market Real Networks in Seattle. I’ve included some photos of Ms. Cantwell at a May fundraising event with campaign supporters and close friends.

Ms. Cantwell being introduced by Jim Johanson at a fundraising event in Edmonds, Washington.

Senator Cantwell has agreed to answer a series of interview questions from me, on science and technology related issues. The format for the interviews has yet to be confirmed, but there will be at least a text version and possibly, a  video one as well on the ScienceTechTablet and BigPictureOne multimedia sites. The interviews will take place sometime over this summer. One of my questions will be related to a photo-essay I wrote this year on the current Solar Storm cycle, which will be peaking by 2013.  Specifically. her views will be asked of how ready we are—in comparison to the 1989 Solar Storm, which caused Hydro-Quebec’s power grid to crash and leave millions of its customers with no electricity.

I mentioned to  Cantell that the Science Technology Engineering & Math (STEM) Advisory for Edmonds School District, which I volunteer as a committee members, will launch a STEM Magnet school at Mountlake Terrace High School for 2012 -2013. The Senator was very enthusiastic with the news, as she is a big supporter of the education program. MLTH was also in her former district when she was a state representative, living in Mountlake Terrace. Questions on how we can attract and support more programs, such as STEM, will be on the interview list.

If you have a science or technology question which relates to the United States for Senator Cantwell, please write it down in the response section bellow this story or email me with your interview question. I will do my best to ask your questions with the time available for the interviews.

A gathering of friends and supporters with Senator Cantwell. From left to right: Jim Johanson. Patrick MacDonald – former Seattle Times music critic, Maria Cantwell, Carmen lisa Valencia, David A. Johanson

For the Archives

chronicles of the everyday

OOAworld

Movie, Photos, Writing, Stories, Videos, Animation, Drawings, Art and Travel

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Via Lucis Photography

Photography of Religious Architecture

Daring to Live in Love!

The Alternate Economy

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Eric Warren

Telling stories through words and images.

%d bloggers like this: