Archive | Emergency Preparedness RSS feed for this section

Will Halloween 2015, Truly Be The Scariest Until 2027?QA x

29 Oct
A photo illustration featuring an arc of potentially hazardous asteroids (PHAs) entering the Earth's orbital path. — Photo illustration: D a v i d J o h a n s on

A photo illustration featuring an arc of potentially hazardous asteroids (PHAs) entering the Earth’s orbital path. — Photo illustration: D a v i d  A  J o h a n s o n

Multimedia eLearning program by: D a v i d A. J o h a n s o n ©

The author is a multimedia photographer, CTE instructor and a former Boeing scientific photographer. For an alternative graphic presentation of this program, please visit: http://BigPictureOne.wordpress.com

Last night I was inspired to take photos of a dramatic moonrise appearing above the Cascade Mountains in the Pacific Northwest. It was an exceptionally clear evening, which enabled the luminous clarity of the moon to reveal its turbulent history.

In fact, the Earth shares some frightening historic parallels with all of its neighboring planets within our solar system. Indeed, of all world’s collateral past and future events, it is the asteroid or comet nemeses which present a potential close encounter of the worst kind!

Ignorance Is Bliss

Since the beginning of time, on a nearly daily basis, these extraterrestrial objects known as an asteroid come perilously close (relative to celestial distance) to our planet Earth. NASA scientists developed a method of categorizing Near Earth Objects (NEO) for tracking the orbital path of asteroids and comets. The space agency’s Near-Earth Object Observation (NEOO) Program, often referred to “Spaceguard” tracks and catalogues celestial objects coming to within 30 million miles (96,560,400 kilometers) of Earth. Ground and space-based telescope resources are used for increased surveillance and tracking of these unwelcome space nomads.

Potentially Hazardous Asteroid (PHAs) is what NASA currently uses for its parameters to gauge an asteroid’s potential impact threat to the Earth. If an asteroid is projected to travel within the moon and Earth’s orbit, it’s considered a potentially Earth-impact threat and depending on its specific trajectory, it is then placed into groups (Athen, Apollo Amor) for enhanced analysis. If a PHA were detected, it should not be assumed that an imminent Earth-collision is about to happen, however, understating or ignoring this catastrophic potential could lead to an early and permanent retirement of most life on Earth.
2015tb145_s
Blinded By The Light of Day

On February 15, 2013 the asteroid 367943 Duende was long-predicted to approach and pass dangerously close to Earth. On that morning, just after sunrise near Chelyabinsk Oblast, Russia a 20 meter sized meteor exploded as it entered the Earth’s atmosphere from a shallow angle. A radiant superbolide meteor blast occurred at an elevation of just under 30 km (18 miles) creating an intense light brighter than the Sun.

The estimated energy released was equivalent to approximately 500 kilotons of TNT, upwards of 30 times the explosive energy of the atomic bomb detonated above Hiroshima. Regional hospitals treated approximately 1,500 people for injuries and at least 7,000 buildings were damaged in half a dozen cities as an indirect result of the meteor’s shock wave.

The Chelyabinsk asteroid literally snuck under the radar as not all 15 meters wide, near-Earth objects are tracked and catalogue. The trajectory of the asteroid aligned so close to the Sun that it was not visible to the instruments responsible for locating such objects.

Within 16 hours after this unexpected event, the forecasted asteroid 367943 Duende perilously flew past Earth by 27,700 km without incident. In the days that followed, there were increased sightings of bright meteors streaking through the night sky. International space agencies and sources concluded that due to the divergent trajectories of the two celestial objects, they could not possibly be related. Consequently, this event illustrates how unprepared the World community currently is for developing essential contingencies to mitigate the range of potential dangers that asteroids present.

 NASA illustration

— NASA illustration

A Sobering Series Of Events

By coincidence, the Chelyabinsk event is cited as the second largest asteroid to impact the Earth’s atmosphere in recorded history. The larger, 1908 Tunguska event was caused from a 50 meter wide asteroid strike, which detonated at a 28,000 foot elevation. In an instant this event leveled approximately 800 square miles of Siberian forest that contained 80 million trees. The subsequent fireball is estimated to have released the energy equivalent of 185 Hiroshima atomic bombs.

The mother of all meteors to have collided with the Earth is the infamous Chicxulub asteroid, which impacted Mexico’s Yucatán Peninsula 65 − 66 million years ago. This mammoth asteroid caused a 10 mile wide crater and was from a 60 km (37.28 mile) fragment associated with the larger 170 km wide parent body. It is estimated the Chicxulub impactor released the equivalent 100 teratons of TNT, which also qualifies as the largest explosion to happen on the planet. This asteroid’s impact is credited with the Cretaceous-Paleogene extinction event, causing the worldwide extinction of most dinosaurs.

Size Does Matter

To put the potential horrific effects of asteroids into perspective, we can use past asteroid encounters to determine the likely scale of catastrophic damage that would likely occur.

An asteroid about 40 meters in width could level the largest cities on the globe. An asteroid or comet of 400 meters, similar in size to the asteroid which NASA has forecasted to come near the Earth on Halloween, would cause serious geological damage to an entire continent.

An asteroid about 1000 meters or larger, would likely end most life on Earth.

Trick Or Treat

Doomsday preppers are exceptionally excited regarding what NASA scientists are tracking and forecasting for asteroid 2015 TB 145. This 400 meter-wide (1,300 feet) is tracked using optical observatories and the radar technology of NASA’s Deep Network at Goldstone, California. Known as the ‘Great Pumpkin’ Halloween Asteroid, it is predicted to safely travel slightly beyond the moon’s orbit on October 31 at 10:05 a.m. PDT., before returning back on its circular journey into the vast realm of our solar system.

According to the Minor Planet Center, which catalogs Near-Earth objects (NEOs) this Halloween’s asteroid visitor is the closest known approach by any substantial celestial object until asteroid 1999 AN10 – which is a massive 800 meter sized object, whose orbit will return it near our moon in August 2027. ~

Resources And References Relating To This Subject Matter.

Halloween Asteroid a Treat for Radar Astronomy — http://neo.jpl.nasa.gov/news/news190.html

The Tunguska Impact — 100 Years Latter  — http://science.nasa.gov/science-news/science-at-nasa/2008/30jun_tunguska/

Near-Earth Object Program — http://neo.jpl.nasa.gov/

Near Earth Object Groups — http://neo.jpl.nasa.gov/neo/groups.html

NEO Earth Close Approaches — http://neo.jpl.nasa.gov/ca/

Chicxulub Crater

Asteroid to narrowly miss Earth on Halloween — http://www.cnn.com/2015/10/21/us/asteroid-earth-nasa-halloween-feat/

Asteroid that could wipe out London — http://www.express.co.uk/news/science/592987/End-of-the-world-asteroid-Blood-Moon-September-apocalypse-armageddon-comet-meteor

GONE IN 30 SECONDS…

30 Oct
Antares_launch_graphic_ae2
It’s estimated that an average of 8 percent of all commercial rocket launches end in failure.
Multimedia eLearning program by: David A. Johanson © All Rights
David Johanson is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. All content, including photography, graphics and text (unless otherwise noted) was created by the author.
To see an alternative graphic format of this program, please select:  ⇒  https://bigpictureone.wordpress.com
Learning objectives Of This Program Includes:
≥ Definition and meaning of space law
 History and development of  space law
≥ History and development of 20TH and 21ST Century Rocket and Launch disasters
≥ How, where and why rocket launch sites and space portals are located on the globe      
 ≥ Potentially life threatening activities and components of rocket launches                                                                                                                        —————————————————————————————————————–
.
The Antares 110 rocket engines roared as they illuminated their departure from Earth — seconds later,  appearing as if mortally wounded, the multi-staged rocket suddenly lost momentum and sank downward, creating an explosive tower of flames. Over the launch site’s PA system an urgent command required all media personnel to leave their equipment and evacuate immediately. It was reported no deaths had occurred — however the total environmental damage,  the launch  site cleanup and insurance liability issues are yet to be assessed.
 Orbital rocket explodes after launch

antares-rocket-explosion-orb3-nasa-photo-BPP_ae3

 NASA’s video of Antares rocket explosion http://www.youtube.com/watch?v=aL5eddt-iAo
This video shows, press journalist and photographers ordered to evacuate as the Antares rocket explodes and unleashes toxic clouds of vaporized solid rocket propellant. Winds should be blowing to the east, so that burning propellant dissipates over the Atlantic Ocean — not heading west towards potentially populated areas, as is indicated happening in this video.  ⇒  http://www.youtube.com/watch?v=IclTka711xo
On October 31ST, just three days after  Orbital Sciences, Antares rocket launch explosion, Virgin Galactic’s SpaceShipTwo (SS2) disintegrates in an upper altitude reentry over California’s Mojave Desert. Unfortunately the space plane’s pilot was killed, as the remaining components of the craft slammed into an unpopulated areahttp://www.youtube.com/watch?v=dy1k5s7Fbl0  ⇒http://www.theguardian.com/science/2014/nov/02/virgin-galactic-spaceshiptwo-crash-investigators-fuel-warningsPhotograph: Kenneth Brown/Reuters

Photograph: Kenneth Brown/Reuters

 

What Goes Up, Must Come Down 
Rocket launch projects have always had to contend with laws of physics, in particular, Newton’s law of gravity. Today, these multimillion dollar programs are governed by another set of laws involving multinational, liability space laws. These binding laws are for protecting individuals, communities and the environment from impacts caused by, man-made objects launched into space or subsequent damage of corporate or national operations in space.
orbital_crs3_launch_milestones_eCase Study: The first record of a space law liability occurring was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages in sending objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.”                  Satellite_crash_BPP_e1070
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law assesses the liability for damages caused by space debris to the nation or agency responsible for its original rocket launch.
By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.”Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Sky_look_ BPP_ae208Because so many international languages are used for creating these technical agreements — terms and meanings  are often misinterpreted. There are linguistic limitations and a general lack of definitions to adequately cover all the specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space, including corporate, cultural and religious interest, adding to the complexity of governing space.
Although most large “space debris” is monitored  with top priority for enabling reentry over uninhabited areas such as oceans and deserts — satellites or sections of rockets still have potential for an unexpected re-entry over an inhabited area.   Hawa_Futur_BPP_e26
Cuba Gives A New Meaning To A Cash Cow
Case Study: In November of 1960, the second stage of a U.S. – Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Eventful And Tragic Rocket Launches Associated With Space Exploration
American physicist, Dr. Robert H. Goddard is the father of modern rocket propulsion. Goddard’s published rocket research during the 1920s, is what German military scientist used to help develop the liquid fueled V2 rocket, which terrorized Europe towards the end of WWll. The V2 (technical name Aggregat-4 or A4) rocket was the first human made artifact to leave the Earth’s atmosphere and reach into space. The basic design of modern rockets has changed little in the 100 years since Goddard was awarded a U.S. patent in 1914,  for a rocket using liquid fuel.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched into space related missions, 8 percent of rocket launches ended in some-type of failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of individuals, including; astronauts, cosmonauts and civilians, along with billions of dollars of property and payload losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

Vanguard TV3, December 6, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit. A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately, this launch mission was not ready for prime-time and occurred as a reflex reaction to the Soviet Union’s surprise aerospace success of launching the world’s first satellite, Sputnik, on October 23, 1957. http://www.youtube.com/watch?v=zVeFkakURXM
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989) http://www.nytimes.com/1989/09/28/world/1980-soviet-rocket-accident-killed-50.html
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAuliffe, selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.            http://www.history.com/topics/challenger-disaster/videos/engineering-disasters—challenger
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath. This event was most likely the worst rocket launch disaster to date, due to the massive loss of human life. Disaster at Xichang | History of Flight | Air & Space Magazine  http://www.airspacemag.com/history-of-flight/disaster-at-xichang-2873673/?c=y%3Fno-ist   video of the rocket launch disaster ⇒ https://www.youtube.com/watch?v=8_EnrVf9u8s
iW_V2c9Uw6hI_aeDelta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.) The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and Spaceports are geographically chosen to mitigate rocket launch accidents. US rocket disasters –     http://www.youtube.com/watch?v=Y4-Idv6HnH8
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars. http://www.military.com/video/explosions/blast/titan-iv-explosion-at-cape-canaveral/1137853205001/
VLS-3 rocket, launch – August 2003, Alcantara (Brazil) – rocket exploded on the launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site. http://usatoday30.usatoday.com/news/world/2003-08-22-brazil-rocket_x.htm 
Global location & GPS coordinates of major spaceports &launch sites. Do you see any similarities in the geographic locations of these launch sites? What  advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

Global location & GPS coordinates of major spaceports & launch sites.
Do you see any similarities in the geographic locations of these launch sites? What advantages do these locations have regarding “Space Law?” For most rocket launches, which site has the greatest geographic advantages & why; which has the least advantages & why?

Rocket launch debris fields are color keyed in red  & Links to space port’s web sites included. (CLICK ON MAP TO ENLARGE) Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why? 4.) Which has the least advantage & why?
Location, location, location is a huge benefit for rocket launch sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice they’re located  in remote, uninhabited areas. Another feature most spaceports share is their proximity to large bodies of water, which are located in an easterly direction (with the exception of the U.S. Vandenberg site.)  Rockets are  launched over oceans to minimize the risk to people or property from  catastrophic accidents, which includes falling launch debris and toxic clouds of burnt fuel propellant. Liability from a launch vehicle is the main reason why all ships and aircraft are restricted from being in water anywhere near or underneath a rocket’s flight path.  Rocket’s debris can contain highly toxic forms of unspent fuel and oxidizer, especially from solid propellant fuels.Sattelite_BPP_e82
The majority of  rockets are launched in an easterly direction, due to the Earth’s easterly rotation. This procedure gives the  rocket extra momentum to help escape the Earth’s gravitational pull. An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity is gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel ( 13 percent less fuel  required for equatorial launches) to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
Photo illustration of space debris using a NASA photo of Skylab — David A Johanso

Photo illustration of space debris using a NASA photo of Skylab — David A Johanson

International space law is emerging from its infancy, attempting to clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exists today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?
Music video portal of rocket launches (nostalgia enriched content):
Boards of Canada – Dawn Chorus http://www.youtube.com/watch?v=rfVfRWv7igg
Boards of Canada – Gemini – http://vimeo.com/68087306
Boards of Canada – Music is Mathhttp://www.youtube.com/watch?v=F7bKe_Zgk4o
Links And Resources, For Space Law And Related Issues

http://definitions.uslegal.com/s/space-law/

http://www.thespacereview.com/article/2588/1

https://www.gwu.edu/~spi/assets/docs/AGuidetoSpaceLawTerms.pdf

http://digitalcommons.unl.edu/spacelaw/38/

 

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063

 WA Okang SatDshBP_e1103
[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

The Latest Full Throttle Multimedia Video of Seattle From the R22 Beta Helicopter – Part 2 of 2

29 Nov

Multimedia video essay by: David Johanson Vasquez – © All Rights

BigPictureOne & ScienceTechTablet are dedicated sites for including excitement, experience & education in E-learning. For an alternative graphic format of this multimedia essay please visit: bigpictureone | Using photos, video & words to explore the Big Picture WordPress.com site

Have you ever traveled by helicopter and encountered a full-throttle-ride at a tree top-level? Part 2 of my Helicopter video series is now online for you to experience. There are valuable safety tips, aerial photo techniques, employment requirements for helicopter mechanics  as well as the ultimate joyriding aerial views of Boeing Field and Seattle!

Collaboration and Clear Communication

Clear communication and teamwork between helicopter pilots and flight mechanics is essential for aviation safety. Professional collaboration and working experience are also required between a pilot and photographer for ensuring successful photographic results. On the day of this video was shot our helicopter experienced technical issues, which needed repairs before completing the Port of Seattle’s aerial photo shoot. With solid communication between pilot and ground crews established, the repairs were completed as the fast and furious activity of aircraft went on all around us at one of the nation’s busiest international airports.

Video by: David Johanson –  © All Rights

Helicopter Rear Rotor Blades Can Be a Liability

A February 2007 Rotor & Wing Magazine article by Tim McAdams, used two tragic crash events involving helicopter aerial photography to illustrate potential hazards encountered from the helicopter’s rear rotor. In the article it reported, “the NTSB determined the probable cause as the pilot-in-command’s improper in-flight decision to maneuver at a low airspeed with a left quartering tailwind, which resulted in a loss of tail-rotor effectiveness.”  The investigation of these and similar crashes helped to create the FAA Advisory Circular AC90-9, that warns pilots of conditions which can cause loss of flight stability due to stress on rear rotors.

Under no circumstances should anyone including ground crews be near the helicopter’s rear rotor while the engine is on. The video shows why helicopter rotor blades are painted with bright patterns to warn of their potential danger.

Fast and Furious

Helicopter operations are virtually never boring and are the centers of major activity. See how the latest video in the series explores Seattle’s dynamic landscape, Boeing Field operations and helicopter safety.

 

REFERENCES: (Click on these sites to learn more on the subject)

Safety Around Helicopters

http://www.fs.fed.us/fire/av_safety/promotion/safety_alerts/IA%20SA%2011-03%20LTE%20Final.pdf

Rotor Hazards

Helicopter Hazards | Aeronautical Knowledge Handbook

Helicopter Landing Area Safety

Rotor & Wing Magazine :: Safety Watch: Loss of Tail Rotor Effectiveness

Tail rotor – Wikipedia, the free encyclopedia

The Kopp-Etchells Effect: Eerie Halo of a Helicopter’s Rotor Blades in a Dust Cloud – Neatorama

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0282087

The Spokesman-Review – Google News Archive Search

Robinson Helicopter Co.

Helicopters Northwest – Boeing Field

Intersting facts about the historic Smith Tower

HistoryLink.org- the Free Online Encyclopedia of Washington State History

Smith Tower – Wikipedia, the free encyclopedia

Walking Tours (Self-Guided) – Visiting Seattle – Seattle.gov

http://www.soundtransit.org/Documents/pdf/about/Chronology.pdf

Downtown (Central Business District) guide, moving to Seattle | StreetAdvisor

Columbia Helicopters

CH-47JA Helicopter | Helicopters | Kawasaki Heavy Industries, Ltd. Aerospace Company

Boeing CH-47 Chinook

Boeing: History — Products – Boeing CH-47 Chinook Rotorcraft

MD Helicopters MD 500 – Wikipedia, the free encyclopedia

Boeing: History — Products – Hughes OH-6 Cayuse/500 Military and Civilian Helicopter

Helicopter Safety | Flight Safety Foundation

http://drum.lib.umd.edu/bitstream/1903/1900/1/umi-umd-1880.pdf

King County International Airport/Boeing Field

Port of Seattle

 

There’s Nothing New Under the Sun, or is There?

19 Jul

Science Tech Tablet provides periodic updates on solar activity, the essay begins after the Space Weather Prediction Center Report

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30


 A multimedia eLearning essay by: David Johanson Vasquez © All Rights — First Addition

 Please note: This essay is a follow-up from my chronicle on solar storm effects of the 1859 Carrington Event on an industrial era society— forward to the postmodern, microelectronic world of today. To better understand the context of this article, it’s suggested you view my introduction solar storm essay found  by selecting the March 2012 archives found on left side of this page.  The National Academy of  Sciences (NAS) (funded by the U.S. Congress) produced a landmark report in 2008 entitled “Severe Space Weather Events— Societal Impacts.” It reported how people of the 21st-century depend on advance-technology systems for daily living, The National Academy of Science stated— Electric power grids, GPS navigation, air travel, financial services and emergency radio communications can all be knocked out by intense solar activity.  A century-class solar storm, the Academy warned, could cause twenty times more economic damage than Hurricane Katrina. [1] Some leading solar researchers believe we are now due for a century-class storm.                                

Photo courtesy of NASA

You’re encouraged to help make the essay interactive by entering comments or observations in the dialogue box at the end of the essay.
The essay is a work in progress, please check back as more content will be added
in the coming days.  — To see this essay in another format, please visit the site: http://www.BigPictureOne.wordpress.com
July 15, 2012 aurora borealis sighting near Everett, WA. This event was caused from an X-class solar storm, which occurred within a week of another X-class storm (X-class being the most severe classification). The 11-year solar cycle is approaching a solar maximum around 2013, this will most likely bring more intense solar storm activity.

.

Depending on your interpretation of the essay’s title, there is nothing new under the sun when it comes to our neighboring star’s behavior. Since our Sun left its infancy as a protostar over 4 billion years ago, by triggering a nuclear fusion reaction and entering a main-sequence stage, its solar mechanics have maintained relative consistent patterns. What has not remained the same is the evolution of life on Earth, in particular, our species’ development of a civilization which now is dependent on a form of energy called electricity. Our Sun is now playing a version of solar roulette with the World’s social and economic future.

The name “aurora borealis” was given by Galileo Galilei, in 1619 A.D., inspired from the Roman goddess of dawn, Aurora, and Boreas from the Greek name for north wind. First record siting was in 2600 B.C. in China. Collision between oxygen particles in Earth’s atmosphere with charged (ionized) particles released from the sun creates green and yellow luminous colors beginning at altitudes of 50 miles (80 kilometers). Blue or purplish-red is produced from nitrogen particles. The solar particles are attracted by the Earth’s northern and southern magnetic poles with curtains of light stretching east to west.

.

Reaching back only a few generations into the 20th Century, electricity was considered a luxury—today ordinary life would be impossible without it! And that’s where our beloved Sun comes into the picture, to potentially cast a shadow on our dependency of electricity. Solar storms have been a reoccurring event before time began, but they didn’t affect people outside of providing a fantastic, special effects light-show  until a critical event happened in 1859.  

In the mid 19th century, while the industrial revolution was near full development, the resource of electric power was first harnessed. Shortly after electricity was put into use for communication using telegraph technology (a 19th century equivalent of the Internet), is when the Sun revealed                                                                                                     a  shocking surprise in the most powerful solar storm ever recorded, which was known a the Carrington Event.

The year 1859 was near a peak in the Sun’s 11-year solar cycle, when the Sun’s polarity readies for reversal. Approaching  the end  sequence of this magnetic shift, brings a solar maximum , which produces violent solar flares and ejects plasma clouds outwards into space. If the flare occurs in a region opposite of Earth, a Coronal Mass Ejection (CME) may send a billion-ton radiation storm towards our planet. Fortunately, the Earth is protected by a robust atmosphere and a magnetic field surrounding the globe, which protects us from most  solar winds. However, an intense solar storm with its charged plasma cloud  can overwhelm our planet’s protective shields. When an extreme solar storm’s magnetic energy counteracts with our planet’s protective magnet field, it creates geomagnetic induced currents (GICs). GICs are massive amounts of electromagnetic energy which travel through the ground and ocean water, seeking the path of  least resistance in power lines, pipe lines and rail tracks. 

In the 1859, Carrington event, the GICs surged through the world’s emerging global communication system,known as the telegraph. So much power was generated from the solar storm entering the Earth’s atmosphere, it sent massive currents through telegraph wires, catching offices on fire, nearly electrocuting operators and  mysteriously continued sending signals with batteries completely  disconnected.     

A visual indication of the Earth’s magnetic field being overwhelmed occurs when the aurora borealis appears. If the cosmic-light-show can be seen near the tropics, it’s an indicator our planet’s magnetic fields are severely being overrun. In the extreme solar storm of 1859, the aurora borealis was seen near the equator and it was reported  people were able to read newspapers outdoors at midnight. Navigational compasses (19th century version of GPS)  throughout the world spun-out-of-control due to the flux of electromagnetic energy.

                                                                                                                                                                                                                                     
A more recent, dramatic example of a solar storm’s impact is the 1989, Quebec-Power blackout. The geomagnetic storm created was much milder than the solar maxim of the 1859, Carrington Event. However, it’s a chilling preview of what a complex, unprotected  electrical grid faces when up against the forces of super solar storm. Quebec-Power’s large transformers were fried by the GICs overloading its grid network. Electrical grids and power-lines  act like a giant antennas in pulling in the  massive flow of geomagnetic energy. In the 1989 solar storm incident, over 6 million people lost power in Eastern Canada and the U.S., with additional connecting power grids on the verge of collapsing.  Again, the powerful 1989 solar disturbance was not the 100 year super storm, but a small preview of what can if  preparations are made to protect the power grid.
`
Solar scientist are now able to put together how extreme storms follow an 11 year solar maxim cycle, like the one we’re now entering, and should peak sometime in 2013. Already this year, six major X-class solar storms, the most intense type, have occurred since January. Within one week of July, we had two of the X-class storms, with last one pointing directly at Earth. On July 13, 2012, the Washington Post’s Jason Sometime, wrote an article with his concerns on how NASA and NOAA were sending out inconsistent warnings about the solar storm from July 12.

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms. Photo: David Johanson Vasquez © All Rights

`
The federal agency FEMA, appears to have learned its’ lesson from Hurricane Katrina and being proactive with a series of super solar storm scenarios. These  scenarios  illustrate the many challenges towards maintaining communication and electric power, based on the strength of the solar event. Without reliable power, food distribution will be problematic. Today we have less reliance on large warehouse  inventories and more dependenancy on — “just in time” food delivery. According to Willis Risk Solutions (industrial underwriter insurer for electric utilities) and Lloyds World Specialist Insurer (formerly LLoyds of London), there’s a global shortage of industrial large electric transformer, which now are only made in a few countries. It would take years to replace the majority of the World’s electric transformers and technically require massive amounts of electric power, which ironically, would not be available in an event of an extreme geomagnetic storm.  http://www.lloyds.com/News-and-Insight/News-and-Features/360-News/Emerging-Risk-360/Transformers-a-risk-to-keeping-the-power-on-230810
`
The companies and  the federal agencies mentioned in this essay, are overall, considered highly respected and cautious in forecasting major threats to societies and national economies. All of the mentioned government entities and scientific organizations realize it’s not a matter  if, but when will the next super solar storm be aimed and sent to Earth.
`
The good news is we can still take the necessary precautions to protect our society and economic future form this clear and present threat. Here’s a link to the 2008 National Academy of Science (funded by congress) report:  Severe Weather—Understanding Societal and Economic Impact: A Workshop Report (2008). This group meets every year to work on preventative strategies. The report contains cost-effective protection plans for electric power grids, please see link provided.        http://books.nap.edu/catalog.php?record_id=12507 
.
Second Addition: More to be added in the days ahead including…
— Update on U.S. House of Representatives and Senate sponsored  legislation for solar and geomagnetic storm preparedness.
— Electric power industry mitigation and preparedness for solar and geomagnetic storm preparedness.
`
`

Chronicles of the largest solar and geomagnetic storms in the last 500 years.

1847  — First geomagnetic storm caused by solar flare inadvertently documented with telegraph technology.  Reports were the telegraph system was sending clearer signals by disconnecting its batteries and using the geomagnetic energy from the storm.  First published affects caused from geomagnetic storm.

1859  — Becomes known as the “Carrington Event;” telegraph system becomes inoperable worldwide as reports of offices are set on fire from supercharged telegraph wire. This is the largest geomagnetic storm in 500 years. Scientist impressed with the event begin documenting future solar storm activity. The destructive power from a storm of this magnitude would devastate global power grids, satellites, computer and communication systems.

1921 — Know as the “Great Storm,” it impacted  worldwide telegraph and radio signals with total blackouts  and cables were burned beyond use. This scale of geomagnetic storm is likely to occur approximately once every 100 years.  As we approach a century mark since this type of storm took place — it’s possible another one could happen at anytime, with devastating results unless preventative measures are taken.

1989 —  Major solar flare erupts on surface of the Sun opposite of Earth; a resulting solar storm trigers a massive geomagnetic storm, which overwhelms Quebec’s power grid. As a result of the storm, six million people instantly loses power as U.S. Northeast and Midwest connecting grids come within seconds of collapse. As a result, Canadian government becomes proactive and takes effort to protect its power grid from future solar storms.

2003 — Know as the “Halloween Storms” this series of geomagnetic storms disrupted GPS, blocked High Frequency (HF) radio and triggered emergency procedures a various nuclear power plants. In Scandinavia and South Africa, section of  power grids were hit hard, many large power transformers were destroyed by the powerful geomagnetic induced currents (GICs).

Chronological  Reports and News Accounts of Solar Storms From 1859 to 2003

This is one of the most comprehensive  list of solar storm accounts on the web. The site chronicles strange solar storm happenings; such as reports in the early 1960s  with TV programs suddenly disappearing and reappearing in other regions. Other unsettling reports include the U.S. being cutoff from radio communication from the rest of the world during a geomagnetic storm. Please see link below:

http://www.solarstorms.org/SRefStorms.html

.
.

Solar Storm Acronyms and Terms

ACE — Advance Compositional Explore = NASA satellite used in detecting and monitoring potential damaging solar flares and CMEs.

AC — alternating current

BPS — bulk power system 

CME — coronal mass ejection = caused from a solar fare near the surface of the sun, which sends  a billion-ton radiation storm out into space.

EHV — extra high voltage

FERC — United States Federal Energy Regulatory Commission

GIC — geo-magnetic induced current = an extreme solar storm’s magnetic energy counteracts with our planet’s protective magnet field, creating electric current which conducts or travels through the ground or ocean water.

GMD — geo-magnetic disturbance

GAO — Government Accounting Office

GPS — global positioning system = A series of satellites positioned in an Earth, geostationary orbit for use in military and civilian navigation

NERC — North American Electric Reliability Corporation

NASA — National Aeronautics and Space Administration

NOAA — National Oceanic and Atmospheric Adminestration

POES — Polar Operational Environmental Satellite

SEP — solar energetic particle

SOHO — Solar and Heliospheric Observatory (satellite)

STDC — Solar Terrestrial Dispatch Center (Canada)

STEREO — Solar Terrestrial Relations Observatory (Satellite)

..

Sources and Links

.

NASA Resources
Illustration courtesy of NASA
A useful illustration for understanding NASA’s efforts with Heliophysics System Observatory
Detail explanation of space weather and NASA monitoring can be found at the following link:   http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html
NOAA Solar storm monitor sites:
NOAA is the nation’s official source of space weather alerts, monitoring and alerts. The following NOAA site provides realtime monitoring and forecasting of solar and geophysical events.  http://www.swpc.noaa.gov/
http://www.n3kl.org/sun/status.html

Washington Post story on conflicting NASA and NOAA solar forecast warnings for the July 12, 2012 solar storm event.
 http://www.washingtonpost.com/blogs/capital-weather-gang/post/solar-storm-incoming-federal-agencies-provide-inconsistent-confusing-information/2012/07/13/gJQAkm06hW_blog.html

NASA and NOAA sites (post warning of impending dangers to the electrical grid from solar storms producing extreme geomagnetic induce currents (GICs) on Earth). http://science.nasa.gov/science-news/science-at-nasa/2009/21jan_severespaceweather/ http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/ http://www.noaawatch.gov/themes/space.php

http://www.guardian.co.uk/science/2012/mar/18/solar-storm-flare-disruption-technology

http://www.wired.com/wiredscience/2012/07/solar-flare-cme-aurora/

http://www.usfa.fema.gov/fireservice/subjects/emr-isac/infograms/ig2012/4-12.shtm#3

My solar storm articles from February www.bigpictureone.wordpress.com  and in the March addition of  www.ScienceTechTablet.wordpress.com  present a comprehensive picture of how solar flares and solar storms originate, with the potential of producing geomagnetic storms on Earth.  If these geomagnetic storms are severe enough, they can threaten our way of life. Some strategies and common sense precautions are offered  for civic preparedness in the case of an extreme solar event.

 

`

Is there a greater champion for keeping America viable as the World leader in technology and science, than Senator Maria Cantwell?

6 Jun

Late 1990’s photo-illustration to promote Real Audio and its affiliates. At that time: RA Vice President of Marketing , Maria Cantwell hired my multimedia services to create this futuristic, virtual reality view of Seattle.

Photos and essay by: David Johanson Vasquez © All Rights   Second—  Addition

The U.S. is in a must-win race, to continue as the clear leader of global competitiveness  in technology and science. No other stakes are higher or ensure greater returns for our nation’s security, economic health and cultural way-of-life.

Photo courtesy of NASA.

Senator Maria Cantwell of Washington State has a proven record of properly managing the resources of public and private sector technology.  Global leadership requires well-informed oversight, which can fully employ, the most recent developments of  science and technology.  Ms. Cantwell’s earlier career as a successful executive in an emerging media technology company, gave her exceptional tech industry qualifications. A functional knowledge of computer engineering provided her a proactive view of emerging, 21st-century Information Technology (IT).  The Senator serves on five Senate Committees; perhaps the most critical for the nation’s position in world leadership is the Commerce, Science & Transportation Committee.

Washington State is fertile ground for producing world leading, innovative technology companies.  Software development, Internet commerce, biotechnology and aerospace industries are the primary economic engines of the Pacific Northwest.  It’s fortunate for the State of Washington and the Nation, to have a representative who clearly recognizes the economic and technical potential of these dynamic industries.

Electricity, is, the lifeblood, which our current technologies rely on.  Electrical energy is not a luxury; it’s a necessity for our way-of-life, which society society takes for granted.  Vigilance from our national leaders is essential for protecting our crucial resources from natural and manmade disasters.

Cantwell’s first major accomplishment as a U.S. Senator began taking shape within the first days of being in office; by her focussing a national spotlight on deceptive energy market manipulations.  In December 2001, Enron—a onetime energy giant— filed for Chapter 11 bankruptcy, while laying-off thousands of its employees.  Enron had taken extreme advantage of deregulation within the energy industry.  Without legislative oversight the company was on a rampage of manipulating energy markets, while overcharging businesses and households millions of dollars.

In the 2005 Energy Bill, Senator Cantwell helped author provisions, which made it a federal crime to manipulate electricity or natural gas markets.  Cantwell also helped uncover evidence, which proved, ongoing deceptive schemes were used by Enron traders to target customers. With the energy company’s blatant deception made public, Senator Cantwell successfully stopped the bankruptcy court from forcing customers  in Washington State, to pay millions of dollars in “termination fees” for electricity which hadn’t been delivered.

Boeing 747 at Everett manufacturing facilities.

Affordable, reliable electricity was and remains today the essential resource, which allows dynamic industries to thrive in the Pacific Northwest.  Boeing aerospace, is a prime example, which could not exist without massive amounts of dependable electricity for its airline manufacturing.

Boeing’s flight line at Everett’s Paine Field.

The Senate’s Commerce, Subcommittee on Technology, Innovation and Competitiveness, has few Senators capable of engaging computer industry experts as Senator Cantwell demonstrated, with her IT background.  During hearings on High–Performance Computing Vital to America’s Competitiveness, Cantwell was able to facilitate important questions on supercomputing architecture and applications. The Senator also had the opportunity to introduce two industry witnesses from the Washington State, who gave examples of how these technologies were advancing research & development to support manufacturing.

High-performance computing are the latest concepts for maximizing the power of supercomputers and networks for advance scientific research and it’s rapidly being embraced by a variety of key industry sectors. These powerful computer systems reach trillions of calculations per second, enabling discoveries not possible with standard computers. High-level computers are now used in a number of applications such as: accurately forecasting weather fronts, DNA modeling and  National Security.

 Internet2, which is a next-generation Internet Protocol and optical network, has the bandwidth performance needed for transferring high-volumes of  data produced by supercomputers.  A new national network, Level 3 Communications can now transfer 100 Gbit/s, which is a 100-percent improvement over Internet2. These high-speed secure networks are primarily used by academic and medical research for universities, in many cases the collaborative R&D will eventually  find an industry application.

At the Senate’s subcommittee, witness, Michael Garret, Director, Airplane Performance for the  Commercial Airplane Division of the Boeing Company, described to Cantwell and the other Senators how high-performance computing dramatically changed Boeing’s aerospace design process. In one example, Garret shared how Boeing had saved 80-percent, in the number of wing designs for the new, 787 Dreamliner.

Boeing 787-Dreamliner preparing for its first “maiden flight,” at Paine Field, Everett Washington.

If our intention for the Nation is to remain a leader in science, technology and commerce, we need more representatives in the Senate,  such as Senator Cantwell.  Our national elected representatives must understand the current and future potential of these advanced computer systems—to keep America technologically, economically, and militarily viable.  Fortunately, we and our  Nation’s Senate have Cantwell to help enable critical question on how to retain our leadership through high-performance computing and a new spectrum of technologies. ~

Senator Cantwell at one of her fundraiser, sharing her views on technology and education.

It’s important I share with you that Maria Cantwell and I have been friends for many years.  She hired me to photograph her when she first ran for congress and generously credits my photography for helping her get elected.  When she latter became an IT executive, she again hired my multimedia services to help promote and market Real Networks in Seattle. I’ve included some photos of Ms. Cantwell at a May fundraising event with campaign supporters and close friends.

Ms. Cantwell being introduced by Jim Johanson at a fundraising event in Edmonds, Washington.

Senator Cantwell has agreed to answer a series of interview questions from me, on science and technology related issues. The format for the interviews has yet to be confirmed, but there will be at least a text version and possibly, a  video one as well on the ScienceTechTablet and BigPictureOne multimedia sites. The interviews will take place sometime over this summer. One of my questions will be related to a photo-essay I wrote this year on the current Solar Storm cycle, which will be peaking by 2013.  Specifically. her views will be asked of how ready we are—in comparison to the 1989 Solar Storm, which caused Hydro-Quebec’s power grid to crash and leave millions of its customers with no electricity.

I mentioned to  Cantell that the Science Technology Engineering & Math (STEM) Advisory for Edmonds School District, which I volunteer as a committee members, will launch a STEM Magnet school at Mountlake Terrace High School for 2012 -2013. The Senator was very enthusiastic with the news, as she is a big supporter of the education program. MLTH was also in her former district when she was a state representative, living in Mountlake Terrace. Questions on how we can attract and support more programs, such as STEM, will be on the interview list.

If you have a science or technology question which relates to the United States for Senator Cantwell, please write it down in the response section bellow this story or email me with your interview question. I will do my best to ask your questions with the time available for the interviews.

A gathering of friends and supporters with Senator Cantwell. From left to right: Jim Johanson. Patrick MacDonald – former Seattle Times music critic, Maria Cantwell, Carmen lisa Valencia, David A. Johanson

Will the current solar storms hitting Earth, lead to lights-out for us all by 2013?

27 Mar

Essay and photos by: David Johanson Vasquez © All Rights

This essay will have Solar Storm forecast and updates located above the story’s first photograph . These updates will be posted anytime a major solar disturbance is cited. Please read the essay first and return at anytime to view posted updates.

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30

Sunday morning, July 15. 2012 – Aurora Borealis NW view from Lowel Snohomish Riverfront Park. David Johanson Vasquez ©

A powerful solar storm’s charge particles interact with Earth’s atmosphere; creating  translucent shimmering curtains of light known as the Aurora Borealis.   Photograph taken in 2003, near Seattle, looking North.    Camera: Nikon D200
 

This year has seen a steady influx of news reports on increased solar storm activity hitting the Earth.  Most broadcasts concerning this development are of a less serious kind, featuring its spectacular visual effects, which creates the unworldly, “Northern Lights” or “Aurora Borealis.”  However, a few reports have mentioned necessary cancellations of airline flights using trans-polar flight routes‑‑‑due to the sun’s disruptive solar flares.  This particular solar activity is nothing new, but a recurring event; which has taken place countless times before civilization ever existed on Earth.  

What’s of concern to us today is the 11-year peak cycle, of which the sun now is entering, resulting in extreme solar storm activity.  Some solar physicists predict the current cycle of storms may have greater magnitude than any before, including the record solar maximum, chronicled over 150 years ago, in the year of 1859.

Why should anyone care if the solar storm activity becomes more intense than any other time in recorded history?  Simply stated‑‑‑civilization as we know it, could be stopped in its tracks or altered to resemble something not recognizable.  Imagine not being able to turn on lights for illuminating your home or office: communication by phone, email and social media all gone, with no guarantees as to when it could or would be back online.  There’s other challenging issues regarding basic, food production and distribution.  These are potentially extreme, but possible scenarios from a major solar storm known as a “coronal mass ejection” (CME), which could knock out virtually any technology, requiring electricity.  This event could take away most of the technology we depend on and ironically transports our way of life back to the time when the last great CME hit.

If you had a window, which peered back-in-time to the end of August, 1859; you’d see a developing western society on track with an industrial revolution in full-motion.  Harnessing the new wonders of steam energy was nearly complete, however, electrical energy barely had reached its first phase of infancy.  Few applications for electricity existed, except for a remarkable one in the form of instant communication.  By sending electrical pulses through copper wires to a remote electromagnetic receiver, messages were transmitted instantly over great distances. The telegraph could be considered a 19th Century equivalent of today’s Internet. This system used a basic, universal binary code developed primarily by the American artist, Samuel F.B. Mores.  By the mid 19th Century, scientist demystified electricity’s secrets, and inventors found ways to harness it for communication using “direct current.

 

As the summer heat of September approached the northern hemisphere: a series of solar storms increased with startling intensity; producing extreme Northern Lights, which appeared in unlikely places, such as the Caribbean near the equator.  Inhabitants reported in Northeastern America by using the intense Northern Lights to read newspapers with, during the dark hours of the night.  Other stories mention groups of people being awakened by this strange, bright light and believing it was actually morning.  All over the World, compasses used for navigation (the rough equivalent of today’s GPS) were no longer giving accurate readings as the Earth’s geomagnetic forces were being distorted by the solar storm’s energy.

Sunspots were first documented by Galileo in the 17th century, these solar disturbances contribute to solar storms.

Sunspots on the Sun’s (technically, the Sun is a  G-type main-sequence star) surface, contributes to forming solar storms, of which Galileo had first observed in the 17th Century and by 1745 solar flares were well documented.  Up until 1859, the solar storm only known effects on humans were producing a dazzling display of cosmic fireworks, located far into the northern and southern hemispheres.

The uniformed industrial age public had no reason to be  concerned as the peak of the solar storm began arriving on September 1st and 2nd.  These extreme, violent sun flares, hurled enormous magnetic clouds of plasma into space, known as a coronal mass ejection (CME).  This CME solar storm became known as the Carrington Event, named for a British astronomer who first recognized and identified its geomagnetic effects on Earth.  

Solar ejections normally take three to four days before reaching Earth, but this extreme burst had a hyper-velocity, which took less than 18-hours for the shock waves to compress the Earth’s protective magnetic field.  As the surge of solar electromagnetic energy overpowered and broke through part of the Earth’s own protective magnetic field, some alarming events began happening.  First came a series of random, garbled telegraph signals being picked up, which mysteriously had not been sent by an operator; then reports of receivers beginning to violently catch fire and setting secondary fires to office papers along with telegraph lines.  Jolts of electricity nearly electrocuted some operators while attempting to disconnect the system’s electrical batteries; even with their disconnection, frenetic signals continued out-of-control from massive energy overflows: the geomagnetic super-storm was sending dangerous charges of electricity through the lines. The event devastated an emerging communication infrastructure and severely set back its development.  This record solar storm event appeared on the scene, well before societies and industries realized electricity’s great potential; much less its inclusive, necessary use in just about every part of the technology we use and take for granted today.

Until recently, I’ve always looked forward to the Northern Lights dazzling arrival.  I recall my first  Aurora Borealis encounter shortly after graduating from college, while on a road trip to the Olympic Rain Forest.  Camping out in the Olympic Mountains, the northern sky began glowing at twilight with vivid illuminating curtains moving until they were flashing directly overhead.  I kept watching the surreal specters until they exited out of view an hour later. 

The next time I viewed these mysterious lights happened on a photography assignment to North Slope oil fields, located above Alaska’s arctic circle.  The Earth’s natural magnetic field, which protects the planet from much of the sun’s solar radiation, is weakest near the Earth’s polar regions; allowing for solar winds to enter and interact with our atmosphere to create the Aurora. This is why the cosmic lights are viewed while looking north, in the northern hemisphere and the reverse for the southern hemisphere.  Captivated by the up-close experience of the Aurora’s light; I endured the extreme outside temperature which was minus 40 degrees. Facing frigid arctic weather, I photographed the light show, until the springs controlling my camera’s shutter began to freeze up. 

Actually today’s digital cameras make it easier to photograph the northern lights. Professional digital cameras are much more sensitive for capturing low light subject matter,than film was and it has a better tonal-dynamic-range.  

My all time favorite Northern Lights experience was in Eastern Washington where I was on a ranch in the Okanogan region. This encounter was so full of bright light, it woke up birds from a night’s sleep and they began to take flight while making loud, chirping sounds as if dawn had arrived.  In this environment, with no light-pollution from a city; while at a 5,000 foot elevation made for an ideal night-sky photography experience. 

In 2003 was one of the greatest solar flare events in contemporary history; the Northern Lights were so intense, I easily photographed them from my home in Western Washington. Despite the bright lights coming from a nearby city they did not obscure the Aurora Borealis view. The photos of the Northern Lights used in this essay are ones taken from my home.  In these images you can see the glowing translucent green, red and purple color produced, as the sun’s energy interacts with various gas elements which comprise the Earth’s atmosphere.

The reason for solar flares are to peak this year, or possibly in early 2013, is due to the sun’s magnetic field reversing polarity within an 11-year cycle.  It takes a full 22-years in these magnetic fields to return to their original pole positions which then completes a full cycle.  Apparently near the 11-year cycle, which our store now has entered, the solar flare activity becomes more intense. 

The 1859 record solar maxim was on one of these 11-year cycles. Another theory connected with returning mammoth CMEs is the high quantity of sunspots recorded over the past couple of decades.   Sunspots appear when portions of our star’s internal superheated matter, mixes with cooler regions above the surface; creating intense magnetic fields.  These magnetic fields are swept up, and then forced below the surface, where they become recycled by the sun’s complex quantum mechanics. Energy from sunspots becomes amplified creating even more extreme magnetic fields as they resurface from a four or five-year subsurface journey.  These magnetic disturbance interact to create concentrated arcs of solar energy, which are so powerful they become ejected outward in the form of solar flares.

The other methods scientist uses for estimating the potential scale of this year’s solar storms is to examine recent solar cycles; and look for progressive trends or patterns for their projections.

 In 1989 a CME hit the Earth with intense energy particles, causing the electrical grid in Quebec, Canada, to crash, which plunged millions of people into darkness.  This event took place during the “cold war” and it caused severe shortwave radio disruptions with Aurora Borealis sightings in south Texas.  Some believed it was the beginning of a Soviet nuclear first strike, using intense electromagnetic energy to disrupt communications and electric grid infrastructure.  In reality, it was caused by a CME, created from the  sun’s own nuclear energy.   Acting like a giant teetering domino, the event triggered a chain reaction, taking down interconnecting electric networks within a large region of North America‑‑‑but even this event was not on a scale with the mega storm of 1859.  That’s why some scientist view the 30-year old, Hydro-Quebec solar storm as a telegraphed alarm warning.

With demand for power growing even faster than the grids themselves, modern networks are sprawling, interconnected, and stressed to the limit—a recipe for trouble, according to the National Academy of Sciences: “The scale and speed of problems that could occur on [these modern grids] have the potential to impact the power system in ways not previously experienced.” There’s fear the expanded network of lines creates a bigger antenna enabling it channel a geomagnetic induced current (GIC.)  NASA has become alarmed with how much more vulnerable the North American power grid has become, it co-developed an experimental program called “Solar Shield” to help warn utilities of impending geomagnetic storms.

Since 1989 we have become much more dependent on microelectronics, with their intricate architecture of high density, compressed components.  Having unshielded microcircuits squeezed tightly together increases the odds of severe damaged caused from geomagnetically induced currents (GICs).  The 1989 solar storm event damage at least 30 satellites, some  of which were beyond repair.  Solar storms can easily scramble the intricate digital components of low-orbit satellites and disorient them from knowing which way is up or down.  In theory, with enough warning, orbiting satellites are safely switched off or pointed away from the sun’s destructive radiation.  

Early warning satellites are now positioned at a L1 pointgeostationary orbit to monitor solar storms and announce threatening CME activity.  The Solar Shield Project is a collaboration between NASA Goddard Space Flight Center and Electric Power Research Institute (EPRI).  The purpose of this project is for establishing a forecasting system, which can be used to lessen the impact of geomagnetically induced current (GIC) on high-voltage power transmission systems. (Please see associated link bellow for more information.)

The Earth’s atmosphere and magnetic fields normally protect us from the harmful solar storm’s radiation.  Higher exposure to the sun’s powerful energy becomes a factor once you start climbing in elevation.  Radiation exposure is a secondary reason why airlines must divert from their trans-polar routes, to avoid excessive exposure.  Disruption of GPS and radio communication from the solar storms is the primary reason for flight diversions. 

Astronauts working above Earth’s protective atmosphere face the greatest risk from such effects caused from solar flares.  These stellar storms have shortened or alter a number of space missions in the past.  The Russian’s space station MIR in 1993 had an unfortunate encounter with a solar storm, exposing the cosmonauts to dangerous levels of over 10 times the normal allowable radiation limits.

What could be the most likely indicators of an impending maxim solar disturbance?  So far, NASA and NOAA are the only government agencies I’m aware of who’s keeping the public informed with the most current status of solar flares.  At the end of this essay are links, which give important information on this year’s solar storms including: NASA and NOAA sites, which are monitored hourly conditions.  If solar storm activity becomes alarming, NASA will most likely be out front with the reports and major news networks will probably soon follow.  If a certain threshold of (x-rays) is reached within the first phase of a major solar storm, the FAA will order cancellations of airlines with trans-polar flights.  Disruption of shortwave radio communication is the earliest indicator of a severe storm.  If conditions become dire, all but emergency flights would be grounded indefinitely.

 - Image courtesy of NASA NASA would issue orders to evacuate astronauts from the International Space Station, this would probably be a strong indicator the radiation levels from the second phase of a storm are  severe.  Supposedly the center of the Space Station has enough mass to offer some protection from this type of event, but NASA would probably play it safe and order emergency return flights, that is, if there was enough time.  Seeing the Northern Lights close to the equator would be a strong indicator the Earth’s geomagnetic fields were being overrun, meaning the big one might be arriving.  If a major CME  (the particle phase of a storm) comes our way, there may be 18 hours or less to prepare.
752830main_iss036e002224_full
 On the positive side, unlike a major earthquake or other natural disasters we at least have some time to ready and brace for a worst case scenario.

It would be an unfortunate irony if the sun made our world go dark, but here’s how it could happen.  The National Academy of Science produced a 2008 report warning, if we had another major solar storm like the 1859 Carrington event, we would have extensive blackouts with the loss of key transformers.

Our Nation’s electrical utilities have in all total, less than 400 major transformers supply all the power we use. There are no longer any companies within the US which make massive sized transformers. If an extreme solar maxim arrives,  we’ll probably be on a long waiting list (along with the rest of the world) for key replacements.  Given enough time, they can be built domestically, but it could take years and a major obstacle is transformers require a huge amounts of electricity for their construction. Even without a disaster happening, electric utilities face a minimum of two-years from when a major transformer (average cost 4 million dollars) is ordered and finally installed (according to a global, equipment insurance company.) Critical shortages of raw materials and trained workforce for installation contribute to this problem. Hopefully the utility company supplying your community power; learned a lesson from the 1989 Hydro-Quebec blackout.  

There are preventive strategies to guard against geomagnetic induced current (GIC)— such as “solid ground system;” which is an industry design to help protect electrical infrastructure from a nuclear induced: electromagnetic pulse (EMP.)   An EMP creates a tremendous amount of electromagnetic energy, similar in some ways to a naturally occurring solar storm CME.  The next best plan for the electric utilities is to disconnect the power lines from any of its key equipment threaten by massive surges of electromagnetic energy.  Just disconnecting lines could prove ineffective if a surge was big enough.  The  connecting leads to a transformer could possibly be used as an antenna for attracting the surge of electromagnetic energy.

There is something you can do to protect your own electrical devices from the devastating effects of either a solar CME or a nuclear EMP.  You can easily, with very little cost, build what is known as a Faraday cage to protect your equipment.  For instance for: a radio, cell phone or batteries (all of which are vulnerable to massive electrical surges;) you first wrap the devices in thick plastic like a freezer bag or bubble wrap, then use three layers of aluminum foil to completely wrap the devices so there are no gaps. The plastic acts as an insulator from the metal foil which intern deflects energy.

I’ve included a web link to an electrical engineer’s website who explains the procedures and others for protecting against Solar CMEs or EMPs. You can also do a google search for Faraday cage. Unplugging your electrical equipment from the outlets is a good safety precaution, which ordinarily could protect you against a lightning storm, but will probably not prevent your electronics from being fried from a major CME. If you remembered what happen to the telegraph system, which was hit by the largest CME in history in 1859, the electromagnetic energy used the unconnected wires from the telegraph as an antenna to channel its force through.  Tesla, the great inventor who championed AC electrical power proved electrical transmission could efficiently be sent through the air without using power lines.

One other critical infrastructure which could be devastating from a CME or EMP is major pipelines.  The metal in power-lines a pipelines is a great conductor of geomagnetic energy.  The test has shown electromagnetic surges can affect the controls for monitoring pressure and flow of buried high-pressure pipelines.  In Russia it was found past solar storms had caused severe corrosion effects of some of its pipeline; apparently this is not as much of an issue in the North America because the pipe manufacturing process.

For most civil preparedness involving impending emergencies, it’s best to listen to experts who advise: always have enough: food, water and flashlights on hand to survive what happens after a major natural disaster event occurs.  A good plan for how to keep in contact with family members will be critical if a major solar storm event occurs; especially with an extreme maxim CME as communication equipment will be toasted unless it was properly shielded from the event.  Self-reliance is a good policy to help weather any type of storm or catastrophe.  Most of the commonsense preparations mentioned in this essay are basic ones every family should have in-place in case of an earthquake or any major disaster.

Will a decimating solar storm hit in 2012 or 2013?  No one can forecast for certain how severe this solar maxim will or will not be; but if the there’s enough strength behind the solar storm and its path becomes directly aimed towards Earth, then it could be the greatest challenge civilization has ever faced.  Learning from the lessons of history has been an essential part of the human experience; we successfully thrive in the moment by learning from histories past events. This seems so obvious, but it involves a fine-tuned balancing act between what we carefully choose to forget of painful tragedies and remember of inspirational triumphs.  Ideally, the value of any-type of learning produces confidence and preparedness for future encounters, situations and events.

Given a solar CMEs disruptive potential, it’s in everyone’s self-interest to judge the potential risk; then have an action-plan to help lessen the life-altering impact of an extreme act of nature.  Personally, I don’t sense any impending doom with this year’s solar maxim.  By doing basic research to become educated on solar events, I gained knowledge of the potential for some disruption to our infrastructure; with this awareness I’m confident I’ve taken the necessary precautions for my family to best be ready for this and any future natural disasters, which may arrive from over the horizon. 

The Aurora Borealis or Northern Lights have been revered and feared by ancient and prehistoric cultures. The phenomena are created from solar winds colliding and interacting with Earth’s atmosphere.
.
.

Fantastic time-lapse video of the Aurora Borealis, click on the link below.

http://vimeo.com/11407018

Below are useful links related to the subject solar storms including official government agencies including: NASA and NOAA.  Other sites and articles include those from: National GeographicWashington Post and Christian Science Monitor.

To visit the following sites: copy and paste these links into your browser or highlight them and use a right mouse click.

http://www.swpc.noaa.gov/

http:science.nasa.gov/science-news/science-at-nasa/2003/23oct_superstorm/

Solar Shield Project is a collaborative project between NASA Goddard Space Flight Center and Electric Power Research Institute (EPRI).  http://ccmc.gsfc.nasa.gov/Solar_Shield/Solar_Shield.htmlhttp://soho.nascom.nasa.gov/data/realtime-images.html

An electrical engineer, who gives great information on how to protect your electrical components from EMP blast, produces this site. He also offers an expert opinion of what to expect will happen to our Nation’s electrical grid, if such an event occurs. http://www.futurescience.com/emp/emp-protection.html

http://news.nationalgeographic.com/news/2011/03/110302-solar-flares-sun-storms-earth-danger-carrington-event-science/

http://www.csmonitor.com/Science/Cool-Astronomy/2010/0809/Could-a-solar-storm-send-us-back-to-the-Stone-Age

http://www.flixxy.com/solar-storm-1859.html

http://news.nationalgeographic.com/2012/03/120308-solar-flare-storm-sun-space-weather-science-aurora/

auroras-flights-sun-earth-space-science

 

For the Archives

chronicles of the everyday

OOAworld

Travel, Art, Stories, Photos, Stories, Film, Videos, Animation, Drawings, Writing

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Daring to Live in Love!

The Alternate Economy

WordPress.com News

The latest news on WordPress.com and the WordPress community.

Eric David Warren

Telling stories through words and images.