Archive | Solar Activity RSS feed for this section

THE MARTIAN PROPHECIES: Earth’s Conquest Of The Red Planet

12 Mar

Mars Frontier series

Early Mars terraforming site inspected by an American first-generation colonist.
Essay, eLearning program, and multimedia content by: David Anthony Johanson © All writing and photography within this program (unless indicated) was produced by the author.
If you would like to see this essay in an alternative graphic format please visit our Science Tech Tablet site at: http://bigpictureone.wordpress.com/2014/03/04/the-martian-prophecies-earths-conquest-of-the-red-planet/
Fu-tur-ism                                                                                                                               noun
1. Concern with events and trends of the future or which anticipate the future.
Any sufficiently advanced technology is indistinguishable from magic. — Arthur C. Clarke
.
How Earth Conquered Mars And Successfully Colonized The Red Planet
March 2054

Mars Frontier series

.

.

.

The Evolutionary Mastery Of Mars
In a forty-year period, the march towards making Mars inhabitable, astonished the most optimistic futurist. A sequence of technological events and economic opportunities (commonly known as the Third Industrial Revolution) converged seamlessly, allowing for safe and efficient journeys to the fourth planet from our Sun. Now, human life has sustained itself and is beginning to thrive on Martian soil.
On Earth, three decades into the third millennium, unstable global weather patterns caused by environmental abuse to our oceans, created extreme ripple effects with appalling famines and droughts. Then, suddenly a horrific rain of fire appeared as a sequence of catastrophic meteorite strikes plagued Earth— hastening humanity’s efforts to reach for the red planet. Of all the planets in our solar system — Mars has proven the best hope as a lifeboat and as a refuge for life taking hold.
Collaboration from the World’s nations, aligned rapidly to expand the colonies beyond Earth’s low-orbit. These outposts are in a stable formation at Sun-Earth Lagrangian Points:  L2, L4,  L5 and beyond. The various sites are used to support manufacturing, exploration and asteroid mining operations. Once established, they became “stepping-stones” towards Mars. Distant supply and launch stations are currently expanding at Sun-Mars Lagrangian points, circulating Mars.

mars-map

Triumph Through Large Scale Asteroid Mining 
After the first three decades of daring space exploration in the late Twentieth Century, momentum was lost from lack of compelling mission. Chemical propulsion system limitations and lack of aerospace manufacturing beyond Earth’s orbit, slowed space exploration’s progress. Major superpowers lacked funding and political will to achieve great advances beyond low Earth Orbit.
As the Twenty-First Century progressed, collaboration of prime aerospace companies Boeing and Space X, developed, hybrid launch vehicles to accelerate humanity’s expanded presence in space. Private commercial ventures determined a great potential existed for mining valuable resources from near Earth asteroids and the Moon. The first company to successfully begin asteroid mining were Planetary Resources, with funding provided by wealthy technology luminaries.

Mars Frontier series

 

.

.

.

.

.

.

.

.

Mars Frontier series

.
Three-D Printing In Space – A Bridge To Infinity 
Early in the Twenty-first Century, new advanced technological tools were developed for flexible and efficient manufacturing. After revolutionary 3-D printing operations took hold in space, opportunities expanded rapidly to develop massive infrastructure beyond Earth’s orbit. Three-D printing devices made prefabrication of immense living and working sites possible on the Moon and various stationary points well beyond Earth’s gravitational influence.

.

Three-D printing for manufacturing space-station stepping-stones
.
Beyond Earth’s Orbit — Islands In Space
As the population of human enterprises rapidly expanded into deep space, exploration of Mars became practical and irresistible.
Using a spectrum of cybernetic applications, including artificial intelligences (AI), atomically precise manufacturing (APM) and 3-D printing provided cost-effective infrastructure manufacturing  to expand beyond Earth’s low orbit. The network of space station developments offers a growing population of skilled aerospace workers — dynamic living and work environments.
Molecular nanotechnology (MNT) produces an endless variety of manufactured goods for the inhabitants of interplanetary space. As the initial space stations quickly expanded and connected to one another, they became known as “Island Stations.” Adopting interplanetary codes for infrastructure support commonality is maintained for all inhabitants and guest visits by the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
A network of stepping stone islands, which initially were used to extend the reach of asteroid mining operations from stable points beyond a low Earth orbit, is essential for colonizing Mars.

Mars Frontier series

Approximately 10 million miles from Earth, a network of station islands is positioned as a gateway point to Mars. These station networks are mutually protected from solar storms/flares by their own artificial magnetosphere. Earth (blue dot) and its moon can be seen near the upper-center part of the photo.

Mars Frontier series

Revolution — Electro Magnetic Propulsion And Magnetic Shield Protective  Fields 
Revolutionary, electromagnetic propulsion systems, using super-cooled, conducting magnets and magnetoplasmadynamic (MPD) were developed for vastly superior performance over conventional chemical rockets. The time required to reach destinations such as Mars has been reduced significantly, by a factor of one year to less than two weeks. Initial funding from NASA and ESA, created a collaboration between Boeing, SpaceX and Virgin Galatic to produce these hybrid propulsion space craft. http://www.cbsnews.com/news/boeing-spacex-to-team-with-nasa-on-space-taxi/
The greatest threat to human space travel and colonization is from solar winds of magnetized plasma carrying protons and alpha particles, which can
Mars Frontier seriesbreak down DNA and lead to cancer. A magnetic coil shield system allows space craft protection from most harmful radiation by creating its own magnetosphere. This shielding system harnesses for universal applications to protect space station populations, inner planetary travelers and Martian colonies.
A high energy accelerator was developed on Mars using spectrums of solar energy to recreate a magnetic field to help produce a sustainable atmosphere.
Mars Frontier series
   An electromagnetic propulsion cargo ship as it begins entering a high energy state.

Mars Frontier series

 

Electromagnetic propulsion “asteroid lifter” encounters solar wind storm.   

star_lifter_bpp_a2054

solar_system_jpeg

NASA illustration.

evo_bio_424

Genetic Modification Through Astrobiology Provides Essential Benefits For Human Space Travelers
Evolutionary biology has provided advantages to meet the challenges of human travel into deep space.
The first generation of genetically modified humans was created to  limit the effects and risk from extended space travel. Microchip circuitry imbedded into tissue, gave humans expanded capabilities to assure space survivability, productivity, and flight operations. To combat muscle degradation from zero gravity-exposure, contractile protein levels were increased in muscle tissue.

.

Settlements On The Red Planet And Stages Of Terraforming
To survive solar radiation effects, early Mar’s settlers lived bellow the planet’s regolith (soil). Within less than a decade, the colonies developed their own localized magnetosphere, which became encapsulated environments within translucent domes — creating an atmospheric oasis. These aerodynamic structures offer shielding from dust storms and subzero temperatures. Now, an enriched quality of life on Mars includes ever-expanding domains of Earth like atmosphere for expanded development and life above the surface of the red planet.Meteor showers streaming above craters and cliffs during a Martian sunrise.
Meteor showers streaming above craters and cliffs during a Martian sunrise.

Mars Frontier series

Massive mirrors are fixed in orbit above Mars for reflecting warmth back onto its surface, to provide a more temperate climate. Reflected light directed at Martian polar ice caps and its Carbon dioxide atmosphere of CO2 helps to keep thermal energy near the planet’s surface. As a result, a thermal runaway greenhouse effect is created to help build a thicker atmosphere. Release of microorganisms on the red the planet dramatically accelerates production, for intensifying greenhouse gas expansion.
Directing small asteroids with rich concentrations of ammonia to impact nitrate beds on Mars, releases high volumes of oxygen and nitrogen. These highly controlled asteroid strikes are providing substantial positive results to help develop an enriched atmosphere.

French_man_Coule_BPP_aerp61

Nanotechnology is now employed on the surface of Mars and is dramatically altering landscape regions within various craters. Genetically modified plant forms are successfully taking hold and surviving some test environments. In conclusion, all of these achievements are creating a more Earth like climate, for efforts to terraform Mars.

.

Earth’s Sustainable Community On Mars
Self replicating machines using APM manufacturing allow infrastructure to develop at astonishing rates on the red planet. New scientific, engineering and mining communities are establishing themselves rapidly as they descend from orbiting stations and stationary platforms above the planet. The current population on Mars has surpassed 40,000 inhabitants and is projected to double within the next five-years.

Mars Frontier series

The form of governance adopted by the colonies on Mars is based on a nonpolitical and international form of cooperation.  Asteroid mining and APM manufacturing are the largest industries associated with the Mars colonies.

Mars Frontier series                

   .      

 Martian colonists celebration party for “Pioneer Days.” Martian sunset seen in the background, behind a massive protective atmospheric shield.

.

Fossil Bed Enigma Reveals We May Never Have Been Alone
Found only days ago in the Antoniadi Crater region, is evidence of a fossil and what appears to be human like footprints. Although this discovery may revolutionize our view of the red planet — we must wait for the samples to arrive on Earth to confirm what could be one of the greatest discoveries of all time.

Mars Frontier series

Discovery at a Martian archeological dig site — “we have never been alone.”

Mars Frontier series

.

.

.

.

.

.

Mars Frontier series

Perchance, the most fascinating evidence of preexisting intelligence of life on Mars, was discovered near the Antoniadi Crater. Enclosed within a geographic site is a source, which is emitting peculiar magnetic fields. Upon further analysis revealed, distinct patterns of what appears as a mysterious complex digital codex. After extensive review and evaluation using a network of 2020 Enigma Genisus Computing system interpreted it as audible, instrumental sounds accompanied by visual projections of humanoid syncopated movements.BoC video See Ya Later
Most perplexing is the referenced quantitative variables, suggest the site was or is a time capsule or possibly a time-portal. To see the reference audio and visual projection, click on the link below. https://www.youtube.com/watch?v=53bCaqz0zZA
Music soundtrack for the Martian Prophecies — Powered by Boards of Canada (you can open another web browser if you’d like to have the following music play while viewing this essay)
Solar System & Planetary travel, music  http://www.youtube.com/watch?v=3l_IMOweP0E
Martian pioneers’ celebratory music  http://www.youtube.com/watch?v=4jBzl–TN1Q   and or http://www.youtube.com/watch?v=PYEZueAelKc  
Music for terraforming Mars to   http://www.youtube.com/watch?v=qthHlLyvplg
A canopy of stars floats above the Monuments of Mars site, just as "Vesta 2"(support station) enters the view, reflecting solar light in its West-East orbital path.

Martian moonlight illuminates sculpted cliffs, as “Vesta II” (logistics platform) enters view —piercing the night sky with solar light reflecting off its West-East orbital path.

Facts Concerning Mars
One day on Mars = 24 hours 37 minutes and 22 seconds.
One year on Mars = 686.98 Earth days.
Average distance from Earth to Mars = 225 million kilometers.
The minimum distance from Earth to Mars = 54. million km.
The farthest distance from Earth to Mars = 401 million km.
Warmest temperature of Mars — 70 degrees F (20 degrees C) near the equator
Origin of the name Mars = Ancient Roman god of war and agricultural guardian
The calendar Month named after Mars = March
Links to Learn More About Mars
http://www.wired.com/wiredscience/2010/01/gallery-mars/
http://cbhd.org/content/whose-image-remaking-humanity-through-cybernetics-and-nanotechnology
http://www.jpl.nasa.gov/missions/
http://www.nasa.gov/vision/space/travelinginspace/future_propulsion.html
http://physicsworld.com/cws/article/news/2008/nov/06/magnetic-shield-could-protect-spacecraft
http://www.slate.com/blogs/quora/2013/09/12/outer_space_can_we_make_mars_or_venus_habitable.html
http://en.wikipedia.org/wiki/List_of_private_spaceflight_companies
http://www.forbes.com/sites/brucedorminey/2013/05/29/can-mars-be-terraformed-nasas-maven-mission-could-provide-answers/
http://en.wikipedia.org/wiki/Lagrangian_point
http://www.applieddefense.com/wp-content/uploads/2012/12/2001-Carrico-Sun-Mars_Libration_Points_And_Mars_Mission_Simulations.pdf
http://www.thespacereview.com/article/2305/1
http://blogs.discovermagazine.com/crux/2014/09/08/where-build-off-world-colonies/#.VGp-1BYexjk
http://www.nss.org/spacemovement/greason.html
http://web.mit.edu/sydneydo/Public/Mars%20One%20Feasibility%20Analysis%20IAC14.pdf
A list of over 400 essays on Mars http://www.123helpme.com/search.asp?text=mars

 

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]

Advertisements

Blinded By Light, In The Middle Of Night

16 Aug
Multimedia essay by: David Johanson Vasquez © All Rights  — Second Edition
For an alternative formatted view of this essay, please visit — http://www.BigPictureOne.wordpress.com

My photo wingman, Rick Wong and I headed into the heart of darkness in quest of the Perseid meteor showers. Mount Rainier National Park—was our ultimate destination. We chose the iconic, volcanic landmark for framing an infinite field of stars, which we believed was far from the glare of city lights. Traveling at night in Rick’s new Ford Fusion, using the hybrid’s voice recognition, made it easy to arrive at the park without using a map. Reaching our destination, luminous sparkling stars lit up the still night, but we were surprised with some uninvited competition, which nearly stole the show.

A stunning view of Mount Rainier reflected in Reflection Lake, with the summer stars overhead. The pink and orange glow on the left side of the mountain is light pollution emitted from the City of Tacoma, approximately 65 miles northwest.

 

We found an ideal location above Reflection lake, with the Cascade Mountains’ most famous stratovolcano in the background. An unexpected warm light was glowing behind Mount Rainier, which I reasoned, was a faint remnant from the earlier sunset. However,  the sun had set at least four hours earlier, so it couldn’t be the source of the illumination. Rick suggested “its light coming from the City of Tacoma,” located about 65 miles away. During a 20-second long exposures used to take images of the snow-capped mountain, I began thinking about the effects caused by light pollution.  

With a bright moon rising, we worked fast to keep up with the changing light, until its intensity eventually overpowered the stars.

With the moon steadily rising behind us, it too was causing us to shift focus on what to photograph. Like a giant diffuse reflector, the moon projected soft filtered sunlight onto a previously dark, formless landscape. As the moonlight overwhelmed the intensity of the starlight, it removed the opportunity for crystal clear views of the Milky Way, as well as faint meteor sightings. Being photo opportunist, we used the moonlight opportunity to reveal shadow-detail  on the south face of Rainier.    

The photographer appears in the dark, like some sorcerer conjuring an intense red light before Mount Rainier and her crown of stars above.

A Peaceful Paradise Lost

There’s a tranquil feeling while in the process of taking long exposures at night; it’s normally quiet with minimal distractions to overwhelm the senses or interrupt your focus. I personally enjoy these rare opportunities of solitude, to visualize an image using a minimal—Zen like perspective.

Distractions can be disruptive during these in-the-now-moments, as when cars coming around corners with intense, high-beam headlights.  More than once, clusters of cars with high beam lights appeared… just as the moon illuminated the mountain’s reflection onto a perfectly still lake. I quickly used my hands, in an attempt to shield the lens from light flare. Finally, the cars diapered into the darkness with no approaching vehicles until dawn.

Photo-illustration of the multiple effects of light sources which can cause light pollution by unintended distraction or spill-light.

Moving above the lake to find new angles for interesting compositions, I began to notice something, which I had not noticed before.  Lights of various colors, were coming from photographers bellow me, created by their digital camera’s preview monitors and infrared sensors for auto focusing. With the low light-sensitive Nikon cameras I was using, their monitor lights appeared like a bright flare in my long exposure photos. Now, I had one more unwelcome light source to deal with, which required strategic timing in making exposures to avoid the glare. 

Again, my thoughts returned to the issues of light pollution. I remembered back home when I wanted to photograph a full-moon  at night and a neighbor’s floodlight lit up the backyard. Their floodlight forced me to find the last remaining isolated shadowed corner of the yard.

My reminiscing was cut short by a distant, but bright, pinpoint of light flashing from bellow Mount Rainier’s summit.  Flashlights from mountain climbers near Camp Muir shined bright like lighthouse beacons in the semi-darkened rocks and glacier fields. Even the faintest light can shine bright at night as documented in World War II. Warships were forbidden from having any exterior lights on at night, including a lit cigarette, otherwise they could be spotted from great distances by enemy submarines.  

Lights from mountain climbers on the approach to the summit of Mount Ranier.

Encountering the Universe’s Brilliance

The improper, overuse of outdoor lighting has erased a fundamental and connecting human experience—encountering the universe’s brilliance with its galaxies and stars shining in the night sky! Making a visual contact with our own galaxy, the Milky Way, is one of the greatest shows seen from Earth.

In less than a century of civilization’s reliance on electric technology: two-thirds of the U.S., half of Europe and a fifth of people in the world—now live where they cannot see the Milky Way with the unaided eye. You can appreciate how we lost our stellar view by seeing aerial photos taken from orbiting spacecraft and the International Space Station. These startling images taken of Earth at night, reveals a man-made galaxy of artificial light, which cancels out much of the real ones in the sky above.  

Some years back, I was a part-owner in a small recreational ranch, in Eastern Washington’s, Okanogan County. Brining friends over from Seattle, it was often nighttime when we arrived. The instant of exiting the cars, was a startling event as the Milky Way’s intensity of light overwhelmed your senses. The “ranch” was remotely located, at about 5,000 feet in the mountains, near the Canadian border and 30-miles from the closest town. Days would go by where we didn’t see a car or even hear a small airplane go overhead… it was one of the most refreshing experiences of my life, to perceive nothing except wind going through trees and seeing only starlight at night for hours at a time.

Image courtesy of NASA

 A television interview with the director of a major observatory in Southern California recounted when Los Angeles had its last electrical blackout —people were calling 911 and his observatory, reporting of strange, bright objects in the night sky. Actually what the callers were seeing for the first time, was the natural light from intensely shining stars of the Milky Way.

Image courtesy of NASA.

 

Besides forfeiting a life inspiring, wondrous view of the cosmos, there’s tangible losses associated with light pollution. Conservative estimates are 30 % of U.S. outdoor lighting is pointed skyward in the wrong direction, which wastes billions of dollars of electricity. The unnecessary practice of lighting clouds, burns more than 6 million tons of coal, which adds harmful greenhouse gas emissions, along with toxic chemicals into our atmosphere and water.

Further scientific studies indicate wildlife is suffering the ill effects of excessive urban lighting.  The City of Chicago has taken measures to turn off or dim its high-rise lighting to enable migrating birds to continue normal migration patterns. An increase in species of insects attracted to light, along with rodent attraction to bright city lighting is a growing concern to many scientists. 

Heavy equipment product shots never look quite this good. Scheduled improvements to the viewing area above Reflection Lake, had some equipment taking a nap, before going to work when the sun came up.

Education Is the Solution to Light Pollution

The reason light pollution has continued to multiply is, we have grown accustomed to its seemingly benign expanding presence. After all, probably no one can point to a single case of a person killed from overexposure to light pollution?  However, there is a correlation to growing health risk associated with overexposure to artificial light in the form of physical fatigue and damage to eyesight. In 2009, the American Medical Association established a policy, which supports the control of light pollution.

Municipal lighting codes are beginning to help define and eliminate unnecessary light pollution. Lighting enforcement can create a more pleasing environment, by reducing excessive urban lighting, which causes fatigue from glare and cuts down on unnecessary electric utility cost. Redirecting outdoor lighting away from the sky where it is needlessly wasted is a simple and easy solution.

Installing motion detector security lights are another efficient and productive mitigation strategy. For security purpose, a light which is triggered by motion is much more effective for crime prevention than a continuous floodlight. Motion detector lights have a clear advantage of focussing our attention onto an area where there’s a sudden change from darkness to bright-light.

The Milky Way is what we should be able to see at night if it was not for unrestricted light-pollution. You can see the Andromeda Galaxy in the right 1/3 of the frame. Nikon D700 – Nikkor 28mm lens @ F3.5 @ 20 seconds August 11 11:48 p.m.

The encouraging news is… the key to reducing light pollution is a simple matter of basic education and action. Public awareness of over-lighting requires a minimal expenditure, which will quickly pay for itself in energy savings and perhaps return the opportunity to experience one of the greatest shows seen from earth. ~

Light pollution glossary:

Urban Sky glow: the brightening of night skies over municipal and communities. Caused primarily from collective reflected light and poorly directed light, which is pointed upward.

Light trespass: light falling or spilling into areas where it is not intended. Also know as “spill light” such municipal streetlights, which go beyond indented illumination of street signs and sidewalks and lighting residential homes.

Glare: A direct, bright or harsh light, which causes discomfort or pain. The effects of glare can be reduced or eliminated with the use of a shield or filter.

Uplight: Light angled inappropriately upward towards the sky and serving no purpose. Uplift washes out the night sky and reduces opportunities for astronomers and stargazers to enjoy the beauty of the planets, moon and stars.

Clutter: Poorly planned, confusing and unpleasant use of multiple lights usually associated with urban or retail lighting. Retail business sometime competes by using overly bright, multicolored or pulsating light

Links to articles & related resources on light pollution:

 http://www.darksky.org/assets/documents/is001.pdf

http://www.njaa.org/light.html

http://www.skymaps.com/articles/n0109.html

http://en.wikipedia.org/wiki/Light_pollution

http://ngm.nationalgeographic.com/geopedia/Light_Pollution

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]

There’s Nothing New Under the Sun, or is There?

19 Jul

Science Tech Tablet provides periodic updates on solar activity, the essay begins after the Space Weather Prediction Center Report

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30


 A multimedia eLearning essay by: David Johanson Vasquez © All Rights — First Addition

 Please note: This essay is a follow-up from my chronicle on solar storm effects of the 1859 Carrington Event on an industrial era society— forward to the postmodern, microelectronic world of today. To better understand the context of this article, it’s suggested you view my introduction solar storm essay found  by selecting the March 2012 archives found on left side of this page.  The National Academy of  Sciences (NAS) (funded by the U.S. Congress) produced a landmark report in 2008 entitled “Severe Space Weather Events— Societal Impacts.” It reported how people of the 21st-century depend on advance-technology systems for daily living, The National Academy of Science stated— Electric power grids, GPS navigation, air travel, financial services and emergency radio communications can all be knocked out by intense solar activity.  A century-class solar storm, the Academy warned, could cause twenty times more economic damage than Hurricane Katrina. [1] Some leading solar researchers believe we are now due for a century-class storm.                                

Photo courtesy of NASA

You’re encouraged to help make the essay interactive by entering comments or observations in the dialogue box at the end of the essay.
The essay is a work in progress, please check back as more content will be added
in the coming days.  — To see this essay in another format, please visit the site: http://www.BigPictureOne.wordpress.com
July 15, 2012 aurora borealis sighting near Everett, WA. This event was caused from an X-class solar storm, which occurred within a week of another X-class storm (X-class being the most severe classification). The 11-year solar cycle is approaching a solar maximum around 2013, this will most likely bring more intense solar storm activity.

.

Depending on your interpretation of the essay’s title, there is nothing new under the sun when it comes to our neighboring star’s behavior. Since our Sun left its infancy as a protostar over 4 billion years ago, by triggering a nuclear fusion reaction and entering a main-sequence stage, its solar mechanics have maintained relative consistent patterns. What has not remained the same is the evolution of life on Earth, in particular, our species’ development of a civilization which now is dependent on a form of energy called electricity. Our Sun is now playing a version of solar roulette with the World’s social and economic future.

The name “aurora borealis” was given by Galileo Galilei, in 1619 A.D., inspired from the Roman goddess of dawn, Aurora, and Boreas from the Greek name for north wind. First record siting was in 2600 B.C. in China. Collision between oxygen particles in Earth’s atmosphere with charged (ionized) particles released from the sun creates green and yellow luminous colors beginning at altitudes of 50 miles (80 kilometers). Blue or purplish-red is produced from nitrogen particles. The solar particles are attracted by the Earth’s northern and southern magnetic poles with curtains of light stretching east to west.

.

Reaching back only a few generations into the 20th Century, electricity was considered a luxury—today ordinary life would be impossible without it! And that’s where our beloved Sun comes into the picture, to potentially cast a shadow on our dependency of electricity. Solar storms have been a reoccurring event before time began, but they didn’t affect people outside of providing a fantastic, special effects light-show  until a critical event happened in 1859.  

In the mid 19th century, while the industrial revolution was near full development, the resource of electric power was first harnessed. Shortly after electricity was put into use for communication using telegraph technology (a 19th century equivalent of the Internet), is when the Sun revealed                                                                                                     a  shocking surprise in the most powerful solar storm ever recorded, which was known a the Carrington Event.

The year 1859 was near a peak in the Sun’s 11-year solar cycle, when the Sun’s polarity readies for reversal. Approaching  the end  sequence of this magnetic shift, brings a solar maximum , which produces violent solar flares and ejects plasma clouds outwards into space. If the flare occurs in a region opposite of Earth, a Coronal Mass Ejection (CME) may send a billion-ton radiation storm towards our planet. Fortunately, the Earth is protected by a robust atmosphere and a magnetic field surrounding the globe, which protects us from most  solar winds. However, an intense solar storm with its charged plasma cloud  can overwhelm our planet’s protective shields. When an extreme solar storm’s magnetic energy counteracts with our planet’s protective magnet field, it creates geomagnetic induced currents (GICs). GICs are massive amounts of electromagnetic energy which travel through the ground and ocean water, seeking the path of  least resistance in power lines, pipe lines and rail tracks. 

In the 1859, Carrington event, the GICs surged through the world’s emerging global communication system,known as the telegraph. So much power was generated from the solar storm entering the Earth’s atmosphere, it sent massive currents through telegraph wires, catching offices on fire, nearly electrocuting operators and  mysteriously continued sending signals with batteries completely  disconnected.     

A visual indication of the Earth’s magnetic field being overwhelmed occurs when the aurora borealis appears. If the cosmic-light-show can be seen near the tropics, it’s an indicator our planet’s magnetic fields are severely being overrun. In the extreme solar storm of 1859, the aurora borealis was seen near the equator and it was reported  people were able to read newspapers outdoors at midnight. Navigational compasses (19th century version of GPS)  throughout the world spun-out-of-control due to the flux of electromagnetic energy.

                                                                                                                                                                                                                                     
A more recent, dramatic example of a solar storm’s impact is the 1989, Quebec-Power blackout. The geomagnetic storm created was much milder than the solar maxim of the 1859, Carrington Event. However, it’s a chilling preview of what a complex, unprotected  electrical grid faces when up against the forces of super solar storm. Quebec-Power’s large transformers were fried by the GICs overloading its grid network. Electrical grids and power-lines  act like a giant antennas in pulling in the  massive flow of geomagnetic energy. In the 1989 solar storm incident, over 6 million people lost power in Eastern Canada and the U.S., with additional connecting power grids on the verge of collapsing.  Again, the powerful 1989 solar disturbance was not the 100 year super storm, but a small preview of what can if  preparations are made to protect the power grid.
`
Solar scientist are now able to put together how extreme storms follow an 11 year solar maxim cycle, like the one we’re now entering, and should peak sometime in 2013. Already this year, six major X-class solar storms, the most intense type, have occurred since January. Within one week of July, we had two of the X-class storms, with last one pointing directly at Earth. On July 13, 2012, the Washington Post’s Jason Sometime, wrote an article with his concerns on how NASA and NOAA were sending out inconsistent warnings about the solar storm from July 12.

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms. Photo: David Johanson Vasquez © All Rights

`
The federal agency FEMA, appears to have learned its’ lesson from Hurricane Katrina and being proactive with a series of super solar storm scenarios. These  scenarios  illustrate the many challenges towards maintaining communication and electric power, based on the strength of the solar event. Without reliable power, food distribution will be problematic. Today we have less reliance on large warehouse  inventories and more dependenancy on — “just in time” food delivery. According to Willis Risk Solutions (industrial underwriter insurer for electric utilities) and Lloyds World Specialist Insurer (formerly LLoyds of London), there’s a global shortage of industrial large electric transformer, which now are only made in a few countries. It would take years to replace the majority of the World’s electric transformers and technically require massive amounts of electric power, which ironically, would not be available in an event of an extreme geomagnetic storm.  http://www.lloyds.com/News-and-Insight/News-and-Features/360-News/Emerging-Risk-360/Transformers-a-risk-to-keeping-the-power-on-230810
`
The companies and  the federal agencies mentioned in this essay, are overall, considered highly respected and cautious in forecasting major threats to societies and national economies. All of the mentioned government entities and scientific organizations realize it’s not a matter  if, but when will the next super solar storm be aimed and sent to Earth.
`
The good news is we can still take the necessary precautions to protect our society and economic future form this clear and present threat. Here’s a link to the 2008 National Academy of Science (funded by congress) report:  Severe Weather—Understanding Societal and Economic Impact: A Workshop Report (2008). This group meets every year to work on preventative strategies. The report contains cost-effective protection plans for electric power grids, please see link provided.        http://books.nap.edu/catalog.php?record_id=12507 
.
Second Addition: More to be added in the days ahead including…
— Update on U.S. House of Representatives and Senate sponsored  legislation for solar and geomagnetic storm preparedness.
— Electric power industry mitigation and preparedness for solar and geomagnetic storm preparedness.
`
`

Chronicles of the largest solar and geomagnetic storms in the last 500 years.

1847  — First geomagnetic storm caused by solar flare inadvertently documented with telegraph technology.  Reports were the telegraph system was sending clearer signals by disconnecting its batteries and using the geomagnetic energy from the storm.  First published affects caused from geomagnetic storm.

1859  — Becomes known as the “Carrington Event;” telegraph system becomes inoperable worldwide as reports of offices are set on fire from supercharged telegraph wire. This is the largest geomagnetic storm in 500 years. Scientist impressed with the event begin documenting future solar storm activity. The destructive power from a storm of this magnitude would devastate global power grids, satellites, computer and communication systems.

1921 — Know as the “Great Storm,” it impacted  worldwide telegraph and radio signals with total blackouts  and cables were burned beyond use. This scale of geomagnetic storm is likely to occur approximately once every 100 years.  As we approach a century mark since this type of storm took place — it’s possible another one could happen at anytime, with devastating results unless preventative measures are taken.

1989 —  Major solar flare erupts on surface of the Sun opposite of Earth; a resulting solar storm trigers a massive geomagnetic storm, which overwhelms Quebec’s power grid. As a result of the storm, six million people instantly loses power as U.S. Northeast and Midwest connecting grids come within seconds of collapse. As a result, Canadian government becomes proactive and takes effort to protect its power grid from future solar storms.

2003 — Know as the “Halloween Storms” this series of geomagnetic storms disrupted GPS, blocked High Frequency (HF) radio and triggered emergency procedures a various nuclear power plants. In Scandinavia and South Africa, section of  power grids were hit hard, many large power transformers were destroyed by the powerful geomagnetic induced currents (GICs).

Chronological  Reports and News Accounts of Solar Storms From 1859 to 2003

This is one of the most comprehensive  list of solar storm accounts on the web. The site chronicles strange solar storm happenings; such as reports in the early 1960s  with TV programs suddenly disappearing and reappearing in other regions. Other unsettling reports include the U.S. being cutoff from radio communication from the rest of the world during a geomagnetic storm. Please see link below:

http://www.solarstorms.org/SRefStorms.html

.
.

Solar Storm Acronyms and Terms

ACE — Advance Compositional Explore = NASA satellite used in detecting and monitoring potential damaging solar flares and CMEs.

AC — alternating current

BPS — bulk power system 

CME — coronal mass ejection = caused from a solar fare near the surface of the sun, which sends  a billion-ton radiation storm out into space.

EHV — extra high voltage

FERC — United States Federal Energy Regulatory Commission

GIC — geo-magnetic induced current = an extreme solar storm’s magnetic energy counteracts with our planet’s protective magnet field, creating electric current which conducts or travels through the ground or ocean water.

GMD — geo-magnetic disturbance

GAO — Government Accounting Office

GPS — global positioning system = A series of satellites positioned in an Earth, geostationary orbit for use in military and civilian navigation

NERC — North American Electric Reliability Corporation

NASA — National Aeronautics and Space Administration

NOAA — National Oceanic and Atmospheric Adminestration

POES — Polar Operational Environmental Satellite

SEP — solar energetic particle

SOHO — Solar and Heliospheric Observatory (satellite)

STDC — Solar Terrestrial Dispatch Center (Canada)

STEREO — Solar Terrestrial Relations Observatory (Satellite)

..

Sources and Links

.

NASA Resources
Illustration courtesy of NASA
A useful illustration for understanding NASA’s efforts with Heliophysics System Observatory
Detail explanation of space weather and NASA monitoring can be found at the following link:   http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html
NOAA Solar storm monitor sites:
NOAA is the nation’s official source of space weather alerts, monitoring and alerts. The following NOAA site provides realtime monitoring and forecasting of solar and geophysical events.  http://www.swpc.noaa.gov/
http://www.n3kl.org/sun/status.html

Washington Post story on conflicting NASA and NOAA solar forecast warnings for the July 12, 2012 solar storm event.
 http://www.washingtonpost.com/blogs/capital-weather-gang/post/solar-storm-incoming-federal-agencies-provide-inconsistent-confusing-information/2012/07/13/gJQAkm06hW_blog.html

NASA and NOAA sites (post warning of impending dangers to the electrical grid from solar storms producing extreme geomagnetic induce currents (GICs) on Earth). http://science.nasa.gov/science-news/science-at-nasa/2009/21jan_severespaceweather/ http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/ http://www.noaawatch.gov/themes/space.php

http://www.guardian.co.uk/science/2012/mar/18/solar-storm-flare-disruption-technology

http://www.wired.com/wiredscience/2012/07/solar-flare-cme-aurora/

http://www.usfa.fema.gov/fireservice/subjects/emr-isac/infograms/ig2012/4-12.shtm#3

My solar storm articles from February www.bigpictureone.wordpress.com  and in the March addition of  www.ScienceTechTablet.wordpress.com  present a comprehensive picture of how solar flares and solar storms originate, with the potential of producing geomagnetic storms on Earth.  If these geomagnetic storms are severe enough, they can threaten our way of life. Some strategies and common sense precautions are offered  for civic preparedness in the case of an extreme solar event.

 

`

Is there a greater champion for keeping America viable as the World leader in technology and science, than Senator Maria Cantwell?

6 Jun

Late 1990’s photo-illustration to promote Real Audio and its affiliates. At that time: RA Vice President of Marketing , Maria Cantwell hired my multimedia services to create this futuristic, virtual reality view of Seattle.

Photos and essay by: David Johanson Vasquez © All Rights   Second—  Addition

The U.S. is in a must-win race, to continue as the clear leader of global competitiveness  in technology and science. No other stakes are higher or ensure greater returns for our nation’s security, economic health and cultural way-of-life.

Photo courtesy of NASA.

Senator Maria Cantwell of Washington State has a proven record of properly managing the resources of public and private sector technology.  Global leadership requires well-informed oversight, which can fully employ, the most recent developments of  science and technology.  Ms. Cantwell’s earlier career as a successful executive in an emerging media technology company, gave her exceptional tech industry qualifications. A functional knowledge of computer engineering provided her a proactive view of emerging, 21st-century Information Technology (IT).  The Senator serves on five Senate Committees; perhaps the most critical for the nation’s position in world leadership is the Commerce, Science & Transportation Committee.

Washington State is fertile ground for producing world leading, innovative technology companies.  Software development, Internet commerce, biotechnology and aerospace industries are the primary economic engines of the Pacific Northwest.  It’s fortunate for the State of Washington and the Nation, to have a representative who clearly recognizes the economic and technical potential of these dynamic industries.

Electricity, is, the lifeblood, which our current technologies rely on.  Electrical energy is not a luxury; it’s a necessity for our way-of-life, which society society takes for granted.  Vigilance from our national leaders is essential for protecting our crucial resources from natural and manmade disasters.

Cantwell’s first major accomplishment as a U.S. Senator began taking shape within the first days of being in office; by her focussing a national spotlight on deceptive energy market manipulations.  In December 2001, Enron—a onetime energy giant— filed for Chapter 11 bankruptcy, while laying-off thousands of its employees.  Enron had taken extreme advantage of deregulation within the energy industry.  Without legislative oversight the company was on a rampage of manipulating energy markets, while overcharging businesses and households millions of dollars.

In the 2005 Energy Bill, Senator Cantwell helped author provisions, which made it a federal crime to manipulate electricity or natural gas markets.  Cantwell also helped uncover evidence, which proved, ongoing deceptive schemes were used by Enron traders to target customers. With the energy company’s blatant deception made public, Senator Cantwell successfully stopped the bankruptcy court from forcing customers  in Washington State, to pay millions of dollars in “termination fees” for electricity which hadn’t been delivered.

Boeing 747 at Everett manufacturing facilities.

Affordable, reliable electricity was and remains today the essential resource, which allows dynamic industries to thrive in the Pacific Northwest.  Boeing aerospace, is a prime example, which could not exist without massive amounts of dependable electricity for its airline manufacturing.

Boeing’s flight line at Everett’s Paine Field.

The Senate’s Commerce, Subcommittee on Technology, Innovation and Competitiveness, has few Senators capable of engaging computer industry experts as Senator Cantwell demonstrated, with her IT background.  During hearings on High–Performance Computing Vital to America’s Competitiveness, Cantwell was able to facilitate important questions on supercomputing architecture and applications. The Senator also had the opportunity to introduce two industry witnesses from the Washington State, who gave examples of how these technologies were advancing research & development to support manufacturing.

High-performance computing are the latest concepts for maximizing the power of supercomputers and networks for advance scientific research and it’s rapidly being embraced by a variety of key industry sectors. These powerful computer systems reach trillions of calculations per second, enabling discoveries not possible with standard computers. High-level computers are now used in a number of applications such as: accurately forecasting weather fronts, DNA modeling and  National Security.

 Internet2, which is a next-generation Internet Protocol and optical network, has the bandwidth performance needed for transferring high-volumes of  data produced by supercomputers.  A new national network, Level 3 Communications can now transfer 100 Gbit/s, which is a 100-percent improvement over Internet2. These high-speed secure networks are primarily used by academic and medical research for universities, in many cases the collaborative R&D will eventually  find an industry application.

At the Senate’s subcommittee, witness, Michael Garret, Director, Airplane Performance for the  Commercial Airplane Division of the Boeing Company, described to Cantwell and the other Senators how high-performance computing dramatically changed Boeing’s aerospace design process. In one example, Garret shared how Boeing had saved 80-percent, in the number of wing designs for the new, 787 Dreamliner.

Boeing 787-Dreamliner preparing for its first “maiden flight,” at Paine Field, Everett Washington.

If our intention for the Nation is to remain a leader in science, technology and commerce, we need more representatives in the Senate,  such as Senator Cantwell.  Our national elected representatives must understand the current and future potential of these advanced computer systems—to keep America technologically, economically, and militarily viable.  Fortunately, we and our  Nation’s Senate have Cantwell to help enable critical question on how to retain our leadership through high-performance computing and a new spectrum of technologies. ~

Senator Cantwell at one of her fundraiser, sharing her views on technology and education.

It’s important I share with you that Maria Cantwell and I have been friends for many years.  She hired me to photograph her when she first ran for congress and generously credits my photography for helping her get elected.  When she latter became an IT executive, she again hired my multimedia services to help promote and market Real Networks in Seattle. I’ve included some photos of Ms. Cantwell at a May fundraising event with campaign supporters and close friends.

Ms. Cantwell being introduced by Jim Johanson at a fundraising event in Edmonds, Washington.

Senator Cantwell has agreed to answer a series of interview questions from me, on science and technology related issues. The format for the interviews has yet to be confirmed, but there will be at least a text version and possibly, a  video one as well on the ScienceTechTablet and BigPictureOne multimedia sites. The interviews will take place sometime over this summer. One of my questions will be related to a photo-essay I wrote this year on the current Solar Storm cycle, which will be peaking by 2013.  Specifically. her views will be asked of how ready we are—in comparison to the 1989 Solar Storm, which caused Hydro-Quebec’s power grid to crash and leave millions of its customers with no electricity.

I mentioned to  Cantell that the Science Technology Engineering & Math (STEM) Advisory for Edmonds School District, which I volunteer as a committee members, will launch a STEM Magnet school at Mountlake Terrace High School for 2012 -2013. The Senator was very enthusiastic with the news, as she is a big supporter of the education program. MLTH was also in her former district when she was a state representative, living in Mountlake Terrace. Questions on how we can attract and support more programs, such as STEM, will be on the interview list.

If you have a science or technology question which relates to the United States for Senator Cantwell, please write it down in the response section bellow this story or email me with your interview question. I will do my best to ask your questions with the time available for the interviews.

A gathering of friends and supporters with Senator Cantwell. From left to right: Jim Johanson. Patrick MacDonald – former Seattle Times music critic, Maria Cantwell, Carmen lisa Valencia, David A. Johanson

Will the current solar storms hitting Earth, lead to lights-out for us all by 2013?

27 Mar

Essay and photos by: David Johanson Vasquez © All Rights

This essay will have Solar Storm forecast and updates located above the story’s first photograph . These updates will be posted anytime a major solar disturbance is cited. Please read the essay first and return at anytime to view posted updates.

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30

Sunday morning, July 15. 2012 – Aurora Borealis NW view from Lowel Snohomish Riverfront Park. David Johanson Vasquez ©

A powerful solar storm’s charge particles interact with Earth’s atmosphere; creating  translucent shimmering curtains of light known as the Aurora Borealis.   Photograph taken in 2003, near Seattle, looking North.    Camera: Nikon D200
 

This year has seen a steady influx of news reports on increased solar storm activity hitting the Earth.  Most broadcasts concerning this development are of a less serious kind, featuring its spectacular visual effects, which creates the unworldly, “Northern Lights” or “Aurora Borealis.”  However, a few reports have mentioned necessary cancellations of airline flights using trans-polar flight routes‑‑‑due to the sun’s disruptive solar flares.  This particular solar activity is nothing new, but a recurring event; which has taken place countless times before civilization ever existed on Earth.  

What’s of concern to us today is the 11-year peak cycle, of which the sun now is entering, resulting in extreme solar storm activity.  Some solar physicists predict the current cycle of storms may have greater magnitude than any before, including the record solar maximum, chronicled over 150 years ago, in the year of 1859.

Why should anyone care if the solar storm activity becomes more intense than any other time in recorded history?  Simply stated‑‑‑civilization as we know it, could be stopped in its tracks or altered to resemble something not recognizable.  Imagine not being able to turn on lights for illuminating your home or office: communication by phone, email and social media all gone, with no guarantees as to when it could or would be back online.  There’s other challenging issues regarding basic, food production and distribution.  These are potentially extreme, but possible scenarios from a major solar storm known as a “coronal mass ejection” (CME), which could knock out virtually any technology, requiring electricity.  This event could take away most of the technology we depend on and ironically transports our way of life back to the time when the last great CME hit.

If you had a window, which peered back-in-time to the end of August, 1859; you’d see a developing western society on track with an industrial revolution in full-motion.  Harnessing the new wonders of steam energy was nearly complete, however, electrical energy barely had reached its first phase of infancy.  Few applications for electricity existed, except for a remarkable one in the form of instant communication.  By sending electrical pulses through copper wires to a remote electromagnetic receiver, messages were transmitted instantly over great distances. The telegraph could be considered a 19th Century equivalent of today’s Internet. This system used a basic, universal binary code developed primarily by the American artist, Samuel F.B. Mores.  By the mid 19th Century, scientist demystified electricity’s secrets, and inventors found ways to harness it for communication using “direct current.

 

As the summer heat of September approached the northern hemisphere: a series of solar storms increased with startling intensity; producing extreme Northern Lights, which appeared in unlikely places, such as the Caribbean near the equator.  Inhabitants reported in Northeastern America by using the intense Northern Lights to read newspapers with, during the dark hours of the night.  Other stories mention groups of people being awakened by this strange, bright light and believing it was actually morning.  All over the World, compasses used for navigation (the rough equivalent of today’s GPS) were no longer giving accurate readings as the Earth’s geomagnetic forces were being distorted by the solar storm’s energy.

Sunspots were first documented by Galileo in the 17th century, these solar disturbances contribute to solar storms.

Sunspots on the Sun’s (technically, the Sun is a  G-type main-sequence star) surface, contributes to forming solar storms, of which Galileo had first observed in the 17th Century and by 1745 solar flares were well documented.  Up until 1859, the solar storm only known effects on humans were producing a dazzling display of cosmic fireworks, located far into the northern and southern hemispheres.

The uniformed industrial age public had no reason to be  concerned as the peak of the solar storm began arriving on September 1st and 2nd.  These extreme, violent sun flares, hurled enormous magnetic clouds of plasma into space, known as a coronal mass ejection (CME).  This CME solar storm became known as the Carrington Event, named for a British astronomer who first recognized and identified its geomagnetic effects on Earth.  

Solar ejections normally take three to four days before reaching Earth, but this extreme burst had a hyper-velocity, which took less than 18-hours for the shock waves to compress the Earth’s protective magnetic field.  As the surge of solar electromagnetic energy overpowered and broke through part of the Earth’s own protective magnetic field, some alarming events began happening.  First came a series of random, garbled telegraph signals being picked up, which mysteriously had not been sent by an operator; then reports of receivers beginning to violently catch fire and setting secondary fires to office papers along with telegraph lines.  Jolts of electricity nearly electrocuted some operators while attempting to disconnect the system’s electrical batteries; even with their disconnection, frenetic signals continued out-of-control from massive energy overflows: the geomagnetic super-storm was sending dangerous charges of electricity through the lines. The event devastated an emerging communication infrastructure and severely set back its development.  This record solar storm event appeared on the scene, well before societies and industries realized electricity’s great potential; much less its inclusive, necessary use in just about every part of the technology we use and take for granted today.

Until recently, I’ve always looked forward to the Northern Lights dazzling arrival.  I recall my first  Aurora Borealis encounter shortly after graduating from college, while on a road trip to the Olympic Rain Forest.  Camping out in the Olympic Mountains, the northern sky began glowing at twilight with vivid illuminating curtains moving until they were flashing directly overhead.  I kept watching the surreal specters until they exited out of view an hour later. 

The next time I viewed these mysterious lights happened on a photography assignment to North Slope oil fields, located above Alaska’s arctic circle.  The Earth’s natural magnetic field, which protects the planet from much of the sun’s solar radiation, is weakest near the Earth’s polar regions; allowing for solar winds to enter and interact with our atmosphere to create the Aurora. This is why the cosmic lights are viewed while looking north, in the northern hemisphere and the reverse for the southern hemisphere.  Captivated by the up-close experience of the Aurora’s light; I endured the extreme outside temperature which was minus 40 degrees. Facing frigid arctic weather, I photographed the light show, until the springs controlling my camera’s shutter began to freeze up. 

Actually today’s digital cameras make it easier to photograph the northern lights. Professional digital cameras are much more sensitive for capturing low light subject matter,than film was and it has a better tonal-dynamic-range.  

My all time favorite Northern Lights experience was in Eastern Washington where I was on a ranch in the Okanogan region. This encounter was so full of bright light, it woke up birds from a night’s sleep and they began to take flight while making loud, chirping sounds as if dawn had arrived.  In this environment, with no light-pollution from a city; while at a 5,000 foot elevation made for an ideal night-sky photography experience. 

In 2003 was one of the greatest solar flare events in contemporary history; the Northern Lights were so intense, I easily photographed them from my home in Western Washington. Despite the bright lights coming from a nearby city they did not obscure the Aurora Borealis view. The photos of the Northern Lights used in this essay are ones taken from my home.  In these images you can see the glowing translucent green, red and purple color produced, as the sun’s energy interacts with various gas elements which comprise the Earth’s atmosphere.

The reason for solar flares are to peak this year, or possibly in early 2013, is due to the sun’s magnetic field reversing polarity within an 11-year cycle.  It takes a full 22-years in these magnetic fields to return to their original pole positions which then completes a full cycle.  Apparently near the 11-year cycle, which our store now has entered, the solar flare activity becomes more intense. 

The 1859 record solar maxim was on one of these 11-year cycles. Another theory connected with returning mammoth CMEs is the high quantity of sunspots recorded over the past couple of decades.   Sunspots appear when portions of our star’s internal superheated matter, mixes with cooler regions above the surface; creating intense magnetic fields.  These magnetic fields are swept up, and then forced below the surface, where they become recycled by the sun’s complex quantum mechanics. Energy from sunspots becomes amplified creating even more extreme magnetic fields as they resurface from a four or five-year subsurface journey.  These magnetic disturbance interact to create concentrated arcs of solar energy, which are so powerful they become ejected outward in the form of solar flares.

The other methods scientist uses for estimating the potential scale of this year’s solar storms is to examine recent solar cycles; and look for progressive trends or patterns for their projections.

 In 1989 a CME hit the Earth with intense energy particles, causing the electrical grid in Quebec, Canada, to crash, which plunged millions of people into darkness.  This event took place during the “cold war” and it caused severe shortwave radio disruptions with Aurora Borealis sightings in south Texas.  Some believed it was the beginning of a Soviet nuclear first strike, using intense electromagnetic energy to disrupt communications and electric grid infrastructure.  In reality, it was caused by a CME, created from the  sun’s own nuclear energy.   Acting like a giant teetering domino, the event triggered a chain reaction, taking down interconnecting electric networks within a large region of North America‑‑‑but even this event was not on a scale with the mega storm of 1859.  That’s why some scientist view the 30-year old, Hydro-Quebec solar storm as a telegraphed alarm warning.

With demand for power growing even faster than the grids themselves, modern networks are sprawling, interconnected, and stressed to the limit—a recipe for trouble, according to the National Academy of Sciences: “The scale and speed of problems that could occur on [these modern grids] have the potential to impact the power system in ways not previously experienced.” There’s fear the expanded network of lines creates a bigger antenna enabling it channel a geomagnetic induced current (GIC.)  NASA has become alarmed with how much more vulnerable the North American power grid has become, it co-developed an experimental program called “Solar Shield” to help warn utilities of impending geomagnetic storms.

Since 1989 we have become much more dependent on microelectronics, with their intricate architecture of high density, compressed components.  Having unshielded microcircuits squeezed tightly together increases the odds of severe damaged caused from geomagnetically induced currents (GICs).  The 1989 solar storm event damage at least 30 satellites, some  of which were beyond repair.  Solar storms can easily scramble the intricate digital components of low-orbit satellites and disorient them from knowing which way is up or down.  In theory, with enough warning, orbiting satellites are safely switched off or pointed away from the sun’s destructive radiation.  

Early warning satellites are now positioned at a L1 pointgeostationary orbit to monitor solar storms and announce threatening CME activity.  The Solar Shield Project is a collaboration between NASA Goddard Space Flight Center and Electric Power Research Institute (EPRI).  The purpose of this project is for establishing a forecasting system, which can be used to lessen the impact of geomagnetically induced current (GIC) on high-voltage power transmission systems. (Please see associated link bellow for more information.)

The Earth’s atmosphere and magnetic fields normally protect us from the harmful solar storm’s radiation.  Higher exposure to the sun’s powerful energy becomes a factor once you start climbing in elevation.  Radiation exposure is a secondary reason why airlines must divert from their trans-polar routes, to avoid excessive exposure.  Disruption of GPS and radio communication from the solar storms is the primary reason for flight diversions. 

Astronauts working above Earth’s protective atmosphere face the greatest risk from such effects caused from solar flares.  These stellar storms have shortened or alter a number of space missions in the past.  The Russian’s space station MIR in 1993 had an unfortunate encounter with a solar storm, exposing the cosmonauts to dangerous levels of over 10 times the normal allowable radiation limits.

What could be the most likely indicators of an impending maxim solar disturbance?  So far, NASA and NOAA are the only government agencies I’m aware of who’s keeping the public informed with the most current status of solar flares.  At the end of this essay are links, which give important information on this year’s solar storms including: NASA and NOAA sites, which are monitored hourly conditions.  If solar storm activity becomes alarming, NASA will most likely be out front with the reports and major news networks will probably soon follow.  If a certain threshold of (x-rays) is reached within the first phase of a major solar storm, the FAA will order cancellations of airlines with trans-polar flights.  Disruption of shortwave radio communication is the earliest indicator of a severe storm.  If conditions become dire, all but emergency flights would be grounded indefinitely.

 - Image courtesy of NASA NASA would issue orders to evacuate astronauts from the International Space Station, this would probably be a strong indicator the radiation levels from the second phase of a storm are  severe.  Supposedly the center of the Space Station has enough mass to offer some protection from this type of event, but NASA would probably play it safe and order emergency return flights, that is, if there was enough time.  Seeing the Northern Lights close to the equator would be a strong indicator the Earth’s geomagnetic fields were being overrun, meaning the big one might be arriving.  If a major CME  (the particle phase of a storm) comes our way, there may be 18 hours or less to prepare.
752830main_iss036e002224_full
 On the positive side, unlike a major earthquake or other natural disasters we at least have some time to ready and brace for a worst case scenario.

It would be an unfortunate irony if the sun made our world go dark, but here’s how it could happen.  The National Academy of Science produced a 2008 report warning, if we had another major solar storm like the 1859 Carrington event, we would have extensive blackouts with the loss of key transformers.

Our Nation’s electrical utilities have in all total, less than 400 major transformers supply all the power we use. There are no longer any companies within the US which make massive sized transformers. If an extreme solar maxim arrives,  we’ll probably be on a long waiting list (along with the rest of the world) for key replacements.  Given enough time, they can be built domestically, but it could take years and a major obstacle is transformers require a huge amounts of electricity for their construction. Even without a disaster happening, electric utilities face a minimum of two-years from when a major transformer (average cost 4 million dollars) is ordered and finally installed (according to a global, equipment insurance company.) Critical shortages of raw materials and trained workforce for installation contribute to this problem. Hopefully the utility company supplying your community power; learned a lesson from the 1989 Hydro-Quebec blackout.  

There are preventive strategies to guard against geomagnetic induced current (GIC)— such as “solid ground system;” which is an industry design to help protect electrical infrastructure from a nuclear induced: electromagnetic pulse (EMP.)   An EMP creates a tremendous amount of electromagnetic energy, similar in some ways to a naturally occurring solar storm CME.  The next best plan for the electric utilities is to disconnect the power lines from any of its key equipment threaten by massive surges of electromagnetic energy.  Just disconnecting lines could prove ineffective if a surge was big enough.  The  connecting leads to a transformer could possibly be used as an antenna for attracting the surge of electromagnetic energy.

There is something you can do to protect your own electrical devices from the devastating effects of either a solar CME or a nuclear EMP.  You can easily, with very little cost, build what is known as a Faraday cage to protect your equipment.  For instance for: a radio, cell phone or batteries (all of which are vulnerable to massive electrical surges;) you first wrap the devices in thick plastic like a freezer bag or bubble wrap, then use three layers of aluminum foil to completely wrap the devices so there are no gaps. The plastic acts as an insulator from the metal foil which intern deflects energy.

I’ve included a web link to an electrical engineer’s website who explains the procedures and others for protecting against Solar CMEs or EMPs. You can also do a google search for Faraday cage. Unplugging your electrical equipment from the outlets is a good safety precaution, which ordinarily could protect you against a lightning storm, but will probably not prevent your electronics from being fried from a major CME. If you remembered what happen to the telegraph system, which was hit by the largest CME in history in 1859, the electromagnetic energy used the unconnected wires from the telegraph as an antenna to channel its force through.  Tesla, the great inventor who championed AC electrical power proved electrical transmission could efficiently be sent through the air without using power lines.

One other critical infrastructure which could be devastating from a CME or EMP is major pipelines.  The metal in power-lines a pipelines is a great conductor of geomagnetic energy.  The test has shown electromagnetic surges can affect the controls for monitoring pressure and flow of buried high-pressure pipelines.  In Russia it was found past solar storms had caused severe corrosion effects of some of its pipeline; apparently this is not as much of an issue in the North America because the pipe manufacturing process.

For most civil preparedness involving impending emergencies, it’s best to listen to experts who advise: always have enough: food, water and flashlights on hand to survive what happens after a major natural disaster event occurs.  A good plan for how to keep in contact with family members will be critical if a major solar storm event occurs; especially with an extreme maxim CME as communication equipment will be toasted unless it was properly shielded from the event.  Self-reliance is a good policy to help weather any type of storm or catastrophe.  Most of the commonsense preparations mentioned in this essay are basic ones every family should have in-place in case of an earthquake or any major disaster.

Will a decimating solar storm hit in 2012 or 2013?  No one can forecast for certain how severe this solar maxim will or will not be; but if the there’s enough strength behind the solar storm and its path becomes directly aimed towards Earth, then it could be the greatest challenge civilization has ever faced.  Learning from the lessons of history has been an essential part of the human experience; we successfully thrive in the moment by learning from histories past events. This seems so obvious, but it involves a fine-tuned balancing act between what we carefully choose to forget of painful tragedies and remember of inspirational triumphs.  Ideally, the value of any-type of learning produces confidence and preparedness for future encounters, situations and events.

Given a solar CMEs disruptive potential, it’s in everyone’s self-interest to judge the potential risk; then have an action-plan to help lessen the life-altering impact of an extreme act of nature.  Personally, I don’t sense any impending doom with this year’s solar maxim.  By doing basic research to become educated on solar events, I gained knowledge of the potential for some disruption to our infrastructure; with this awareness I’m confident I’ve taken the necessary precautions for my family to best be ready for this and any future natural disasters, which may arrive from over the horizon. 

The Aurora Borealis or Northern Lights have been revered and feared by ancient and prehistoric cultures. The phenomena are created from solar winds colliding and interacting with Earth’s atmosphere.
.
.

Fantastic time-lapse video of the Aurora Borealis, click on the link below.

http://vimeo.com/11407018

Below are useful links related to the subject solar storms including official government agencies including: NASA and NOAA.  Other sites and articles include those from: National GeographicWashington Post and Christian Science Monitor.

To visit the following sites: copy and paste these links into your browser or highlight them and use a right mouse click.

http://www.swpc.noaa.gov/

http:science.nasa.gov/science-news/science-at-nasa/2003/23oct_superstorm/

Solar Shield Project is a collaborative project between NASA Goddard Space Flight Center and Electric Power Research Institute (EPRI).  http://ccmc.gsfc.nasa.gov/Solar_Shield/Solar_Shield.htmlhttp://soho.nascom.nasa.gov/data/realtime-images.html

An electrical engineer, who gives great information on how to protect your electrical components from EMP blast, produces this site. He also offers an expert opinion of what to expect will happen to our Nation’s electrical grid, if such an event occurs. http://www.futurescience.com/emp/emp-protection.html

http://news.nationalgeographic.com/news/2011/03/110302-solar-flares-sun-storms-earth-danger-carrington-event-science/

http://www.csmonitor.com/Science/Cool-Astronomy/2010/0809/Could-a-solar-storm-send-us-back-to-the-Stone-Age

http://www.flixxy.com/solar-storm-1859.html

http://news.nationalgeographic.com/2012/03/120308-solar-flare-storm-sun-space-weather-science-aurora/

auroras-flights-sun-earth-space-science

 

For the Archives

chronicles of the everyday

OOAworld

Movie, Photos, Writing, Stories, Videos, Animation, Drawings, Art and Travel

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Via Lucis Photography

Photography of Religious Architecture

Daring to Live in Love!

The Alternate Economy

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Eric Warren

Telling stories through words and images.

%d bloggers like this: