Archive | Blended Learning RSS feed for this section

New Brain-Based Learning Strategies Explored — To Help Achieve Your Full Potential.

31 Dec

Rattlesnake R hike BPP_e11

Multimedia eLearning program by: David A. Johanson © All Rights

The author is a multimedia photographer, CTE instructor and a former Boeing scientific photographer.  For an alternative graphic view of this program, please visit:  https://bigpictureone.wordpress.com 

 “Learning is the Fountain of Youth, drink knowledge and stay young.” — DAJ

As an instructor in Career Technical Education, I’m continually developing eLearning, multimedia presentations, which help illuminate a spectrum of career and technical subjects. Finding and sharing new learning strategies, that are inspired from evidence based, neuroimaging and brain-mapping studies, is a dynamic process to help assist individuals in reaching their full learning potential.       Neural_Network_BPP_ae9763

Brain-based learning is a spectrum of teaching strategies, which uses neuroscience research on how the brain functions in achieving ideal development and potential.

Through evidence of how the brain learns, best practices are emerging that help accelerate individual learning performance. Cognitive science indicates emotional engagement is crucial for learning, regardless of the age of a student. Harnessing focussed attention forms the foundation for developing learning strategies. 

On April 2, 2013, the Obama administration introduced The Brain Initiative (Brain Research through Advancing Innovative Neurotechnologies). Also known as the Brain Activity Map Project, its goal is to map the activity of every neuron in the human brain. Due to the accelerated advances in neuroscience, we can utilize this knowledge to better understand the dynamics and potential of the human brain.

Structural Changes In The Brain Enhances Learning

According to the author, M.D. Judy Will’s, book titled, Research-Based Strategies to Ignite Student Learning — two decades of advances in neuroscience technology have documented evidence-based, neuroimaging to determine the most effective ways to learn. Leading universities and world-class research centers are charting the dynamic frontier of how the brain retains and access learned content.

Rattle_Snake_Ridge_Pano_BPP_ea1

Apparently, specific structural changes in the brain enhances learning or storage and retrieval of content. The anatomy of the brain includes components known as lobes that perform various cognitive functions and are connected through neuro pathways. These connecting circuits within the cerebrum are composed of cells, which can grow, due to learning activities.

Neurons, are nerve cells where information is stored, they use synapses as a junction to transfer signals to other neurons. The networks of neurons are connected by extension, of cells, know as dendrites. Dendrites are used to transfer information similar to wires or cables within a computer that function to transfer data. Numbers and size of dendrites increase when activated by a variety of learning experiences.         

Photo-illustration of a neural network.

Photo-illustration of a neural network.

The brain’s plasticity is remarkably flexible in its ability to allow dendrites to reform and reorganize its networks of neurons. These pathways of dendrite-neurons are capable of decrease or robust increase, depending on the use of sensory activities, initiated by external auditory, visual or motor stimulus (multisensory). Various regions of the brain, will respond more actively, depending on the particular type sensory input. This is why various learning activities, which uses multi-mode sensory stimulus can enhance memory retention and promote overall learning performance.  ESD Strat Direct 2014 BPP_142

Using brain-mapping procedures, researchers have determined active regions of the brain where a person process specific types of information. In addition, neuroscientist can see how this data is more efficiently used by other components of the brain.

Increased Variations Of Memory Pathways, Accelerates Retention of Knowledge And Skills

Research indicates, by using multiple pathways for sensory stimulus, increases the number and size of dendrites, therefore, the brain’s plasticity allows for enhanced neuron networks. In conclusion, the more sensory inputs a learner can use to acquire information, the greater opportunity for an individual to recall that specific content.

The brain has a great redundancy of neuron networks or pathways, so much so, that inactive neuro pathways are removed in a process termed as pruning. Throughout the life of an individual, the brain uses this pruning process to allow for more efficiency. Consequently, the neuron networks, which when used more frequently, are enhanced in thickness and performance.

A Key For Developing More Brain Connections

Enhancing stronger neuro circuits and creating more connections to improve learning is the goal of brain-based teaching.

When a learner experiences and reviews visual content, neuro networks are enhanced connecting to the posterior lobes region of the brain, which is responsible for processing optical stimulus. Accordingly, when a student hears the corresponding instruction, audio input is channeled using neuro pathways to the brain’s temporal lobes that process auditory signals. This redundancy of information ensures the brain will increase the likelihood of recalled content, due to interconnectivity components of the brain.     Neural_Network_BPP_ae9766

 .

 .

Event memories, are classified as recollections, with emotional magnitude associated with them. An occurrence of a dramatic event creates a strong sensory input that intensely uses neural pathways to store memories in the limbic system. The retention of shared content in another region of the brain enhances the opportunity of memory recall.  An increase in the extent of sensory inputs, means more channels to actively retrieve content from stored memories.

Most people can easily recall events taking place years in the past, through experiencing a form of nostalgia. The smell of grass clippings may bring back thoughts of a long-lost summer day — hearing a song can trigger vivid memories through the limbic system’s powerful use of sensory input.  Astia Antq Italy BPP ae0178

Facilitators who use a variety of instructional media to demonstrate the same subject matter, will increase the opportunity for learners to comprehend and retain that content. Again, by engaging a diversity of neural pathways, facilitates connecting to more stimulus processing regions of the brain. Similar to computers, the brain’s increase use of processing resources allows for quicker retrieval and storage of data.

Developing Learning Activities, Which Build Upon Students’ Existing Experiences, Ensures Greater Success

Any learning activity that actively personalizes a learners’ involvement in the process, will increase memory retention and meaning of the content. Also, a teacher or instructor should utilize surprise or uniqueness in the presentation of content, so as to capture the attention and focus of a student.

Craig DeVine, CTE instructor, working with students enrolled in Mountlake Terrace HS's, STEM Magnet School.

Craig DeVine, CTE instructor, working with students enrolled in Mountlake Terrace HS’s, STEM Magnet School.

In fact, effective teachers and instructors have intuitively used some of these brain-based instructional strategies, well before brain-mapping science was developed. Educators formally assessed the effectiveness of these methods through test results, however today, evidence-base neuroimaging is confirming the scientific reason for the learning success.

Here are some brain-based activities for students to benefit from, by being personally involved with how they input the lesson or content.

I’ve had the opportunity to use “concept and mind mapping” as a student learning

This

This “word cloud” is a form of “concept or mind mapping” to enable better recall and to stimulate creative thinking.

activity, in the classroom for Career Technical Education courses. This personalized learning activity is effective for note taking and enhancing recall. By assessing test results and interviewing individual students on their comprehension of the content, this activity proved successful in achieving the assignment’s learning objective. This technique may not work for everyone, however, cognitive research has shown the great advantage of activating more regions of the mind to enhance neuron pathways for greater memory recall. Link for creating “word clouds” — http://www.wordle.net

Trends In ELearning Demand, Correlates With Neuroimaging Evidence Of Brain Based Learning Success

The Research Institute of America, recently published a study indicating eLearning increased information retention rates by 60 percent. A report produced by IBM, indicated companies using eLearning programs have the potential to increase productivity of up to 50 percent. Essentially, eLearning is a multimedia rich environment, which combines photographs, video, audio, graphics and text to produce an enriched educational experience. Corporate and post-secondary education is fueling a massive growth in eLearning. According to a leading market research firm, Global Industry Analysts forecast a $107 Billion investment, internationally, in eLearning programs by the end of 2015.

 

Rattlesnake R hike BPP_e11“The meaning of ‘knowing’ has shifted to being able to remember and repeat information to being able to find and use it.” (National Research Council, 2007)

 

ESL Teacher Resource — Practical Ways Brain-Based Research Apples To English As A Second Language (ESL) Learners

http://iteslj.org/Articles/Lombardi-BrainResearch.html

Links & Resources For Brain-Based Learning

http://www.whitehouse.gov/share/brain-initiative

http://www.livescience.com/41413-momentum-builds-for-obama-s-brain-initiative.html

http://www.ascd.org/publications/books/107006/chapters/Memory,_Learning,_and_Test-Taking_Success.aspx

http://www.brainbasedlearning.net/guiding-principles-for-brain-based-education/

http://www.edutopia.org/article/brain-based-learning-resource-roundup

http://www.funderstanding.com/theory/brain-based-learning/brain-based-learning/

http://www.sedl.org/scimath/compass/v03n02/brain.html#8

http://edglossary.org/brain-based-learning/

Links & Resources Brain-Based Best Practices

http://www.teyl.org/article13.html

http://files.eric.ed.gov/fulltext/ED510039.pdf

http://www.seenmagazine.us/articles/article-detail/articleid/47/21-sup-st-sup-century-focus-brain-based-learning.aspx

Links & Resources Forecasting Growth Of Multimedia eLearning

http://www.forbes.com/sites/tjmccue/2014/08/27/online-learning-industry-poised-for-107-billion-in-2015/

http://elearningindustry.com/top-10-e-learning-statistics-for-2014-you-need-to-know

http://www.ambientinsight.com/reports/elearning.aspx

Reviews Of Learning Sites Using Brain-Based Games & Techniques

http://www.businessinsider.com/do-lumosity-and-other-brain-training-games-work-2014-1

http://www.businessinsider.com/lumosity-review-2014-2#theres-some-evidence-that-it-can-produce-short-term-specific-training-effects-that-do-not-generalize–a-small-if-fleeting-boost-to-your-working-memory-capacity-for-example-but-this-can-hardly-be-confused-with-achieving-your-full-potential-8

Links To Cognative Or Brain-Based Learning Sites – Often These Sites Offer Free Trials

http://www.lumosity.com

http://www.rebilderu.com

——————

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

GONE IN 30 SECONDS…

30 Oct
Antares_launch_graphic_ae2
It’s estimated that an average of 8 percent of all commercial rocket launches end in failure.
Multimedia eLearning program by: David A. Johanson © All Rights
David Johanson is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. All content, including photography, graphics and text (unless otherwise noted) was created by the author.
To see an alternative graphic format of this program, please select:  ⇒  https://bigpictureone.wordpress.com
Learning objectives Of This Program Includes:
≥ Definition and meaning of space law
 History and development of  space law
≥ History and development of 20TH and 21ST Century Rocket and Launch disasters
≥ How, where and why rocket launch sites and space portals are located on the globe      
 ≥ Potentially life threatening activities and components of rocket launches                                                                                                                        —————————————————————————————————————–
.
The Antares 110 rocket engines roared as they illuminated their departure from Earth — seconds later,  appearing as if mortally wounded, the multi-staged rocket suddenly lost momentum and sank downward, creating an explosive tower of flames. Over the launch site’s PA system an urgent command required all media personnel to leave their equipment and evacuate immediately. It was reported no deaths had occurred — however the total environmental damage,  the launch  site cleanup and insurance liability issues are yet to be assessed.
 Orbital rocket explodes after launch

antares-rocket-explosion-orb3-nasa-photo-BPP_ae3

 NASA’s video of Antares rocket explosion http://www.youtube.com/watch?v=aL5eddt-iAo
This video shows, press journalist and photographers ordered to evacuate as the Antares rocket explodes and unleashes toxic clouds of vaporized solid rocket propellant. Winds should be blowing to the east, so that burning propellant dissipates over the Atlantic Ocean — not heading west towards potentially populated areas, as is indicated happening in this video.  ⇒  http://www.youtube.com/watch?v=IclTka711xo
On October 31ST, just three days after  Orbital Sciences, Antares rocket launch explosion, Virgin Galactic’s SpaceShipTwo (SS2) disintegrates in an upper altitude reentry over California’s Mojave Desert. Unfortunately the space plane’s pilot was killed, as the remaining components of the craft slammed into an unpopulated areahttp://www.youtube.com/watch?v=dy1k5s7Fbl0  ⇒http://www.theguardian.com/science/2014/nov/02/virgin-galactic-spaceshiptwo-crash-investigators-fuel-warningsPhotograph: Kenneth Brown/Reuters

Photograph: Kenneth Brown/Reuters

 

What Goes Up, Must Come Down 
Rocket launch projects have always had to contend with laws of physics, in particular, Newton’s law of gravity. Today, these multimillion dollar programs are governed by another set of laws involving multinational, liability space laws. These binding laws are for protecting individuals, communities and the environment from impacts caused by, man-made objects launched into space or subsequent damage of corporate or national operations in space.
orbital_crs3_launch_milestones_eCase Study: The first record of a space law liability occurring was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages in sending objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.”                  Satellite_crash_BPP_e1070
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law assesses the liability for damages caused by space debris to the nation or agency responsible for its original rocket launch.
By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.”Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Sky_look_ BPP_ae208Because so many international languages are used for creating these technical agreements — terms and meanings  are often misinterpreted. There are linguistic limitations and a general lack of definitions to adequately cover all the specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space, including corporate, cultural and religious interest, adding to the complexity of governing space.
Although most large “space debris” is monitored  with top priority for enabling reentry over uninhabited areas such as oceans and deserts — satellites or sections of rockets still have potential for an unexpected re-entry over an inhabited area.   Hawa_Futur_BPP_e26
Cuba Gives A New Meaning To A Cash Cow
Case Study: In November of 1960, the second stage of a U.S. – Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Eventful And Tragic Rocket Launches Associated With Space Exploration
American physicist, Dr. Robert H. Goddard is the father of modern rocket propulsion. Goddard’s published rocket research during the 1920s, is what German military scientist used to help develop the liquid fueled V2 rocket, which terrorized Europe towards the end of WWll. The V2 (technical name Aggregat-4 or A4) rocket was the first human made artifact to leave the Earth’s atmosphere and reach into space. The basic design of modern rockets has changed little in the 100 years since Goddard was awarded a U.S. patent in 1914,  for a rocket using liquid fuel.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched into space related missions, 8 percent of rocket launches ended in some-type of failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of individuals, including; astronauts, cosmonauts and civilians, along with billions of dollars of property and payload losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

Vanguard TV3, December 6, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit. A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately, this launch mission was not ready for prime-time and occurred as a reflex reaction to the Soviet Union’s surprise aerospace success of launching the world’s first satellite, Sputnik, on October 23, 1957. http://www.youtube.com/watch?v=zVeFkakURXM
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989) http://www.nytimes.com/1989/09/28/world/1980-soviet-rocket-accident-killed-50.html
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAuliffe, selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.            http://www.history.com/topics/challenger-disaster/videos/engineering-disasters—challenger
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath. This event was most likely the worst rocket launch disaster to date, due to the massive loss of human life. Disaster at Xichang | History of Flight | Air & Space Magazine  http://www.airspacemag.com/history-of-flight/disaster-at-xichang-2873673/?c=y%3Fno-ist   video of the rocket launch disaster ⇒ https://www.youtube.com/watch?v=8_EnrVf9u8s
iW_V2c9Uw6hI_aeDelta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.) The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and Spaceports are geographically chosen to mitigate rocket launch accidents. US rocket disasters –     http://www.youtube.com/watch?v=Y4-Idv6HnH8
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars. http://www.military.com/video/explosions/blast/titan-iv-explosion-at-cape-canaveral/1137853205001/
VLS-3 rocket, launch – August 2003, Alcantara (Brazil) – rocket exploded on the launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site. http://usatoday30.usatoday.com/news/world/2003-08-22-brazil-rocket_x.htm 
Global location & GPS coordinates of major spaceports &launch sites. Do you see any similarities in the geographic locations of these launch sites? What  advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

Global location & GPS coordinates of major spaceports & launch sites.
Do you see any similarities in the geographic locations of these launch sites? What advantages do these locations have regarding “Space Law?” For most rocket launches, which site has the greatest geographic advantages & why; which has the least advantages & why?

Rocket launch debris fields are color keyed in red  & Links to space port’s web sites included. (CLICK ON MAP TO ENLARGE) Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why? 4.) Which has the least advantage & why?
Location, location, location is a huge benefit for rocket launch sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice they’re located  in remote, uninhabited areas. Another feature most spaceports share is their proximity to large bodies of water, which are located in an easterly direction (with the exception of the U.S. Vandenberg site.)  Rockets are  launched over oceans to minimize the risk to people or property from  catastrophic accidents, which includes falling launch debris and toxic clouds of burnt fuel propellant. Liability from a launch vehicle is the main reason why all ships and aircraft are restricted from being in water anywhere near or underneath a rocket’s flight path.  Rocket’s debris can contain highly toxic forms of unspent fuel and oxidizer, especially from solid propellant fuels.Sattelite_BPP_e82
The majority of  rockets are launched in an easterly direction, due to the Earth’s easterly rotation. This procedure gives the  rocket extra momentum to help escape the Earth’s gravitational pull. An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity is gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel ( 13 percent less fuel  required for equatorial launches) to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
Photo illustration of space debris using a NASA photo of Skylab — David A Johanso

Photo illustration of space debris using a NASA photo of Skylab — David A Johanson

International space law is emerging from its infancy, attempting to clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exists today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?
Music video portal of rocket launches (nostalgia enriched content):
Boards of Canada – Dawn Chorus http://www.youtube.com/watch?v=rfVfRWv7igg
Boards of Canada – Gemini – http://vimeo.com/68087306
Boards of Canada – Music is Mathhttp://www.youtube.com/watch?v=F7bKe_Zgk4o
Links And Resources, For Space Law And Related Issues

http://definitions.uslegal.com/s/space-law/

http://www.thespacereview.com/article/2588/1

https://www.gwu.edu/~spi/assets/docs/AGuidetoSpaceLawTerms.pdf

http://digitalcommons.unl.edu/spacelaw/38/

 

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063

 WA Okang SatDshBP_e1103
[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Will The Next Jet Airliner You Fly Already Be Obsolete, And Ready for Early Retirement?

9 Oct

 

Boeing_PaineF_BPP_ah7069
Multimedia eLearning program by: David Anthony Johanson ©  – All written & graphic content on this site (unless noted) was produced by the author. Add: 2.0  For an alternative graphic interface click here: https://bigpictureone.wordpress.com
This multimedia essay includes an eLearning program for secondary/post secondary education and community learning. Assessment tool: A quiz and answer key is located at the end of the program. Learning content covered:  aerospace/airliner— aerospace engineering, avionics, economics & business, environmental  footprint,  financing, manufacturing, marketing, obsolescence management, technology. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning.  Key: Words or phrases are italicized to emphasize essential concepts or terms for enhanced retention and learning.
[ Disclaimer: David Johanson is a former Boeing scientific photographer and currently has no stock holdings or a financial interest in: Boeing, Airbus or any other companies referenced in this program. Research in this article has been cross referenced using at least three sources, however, all perspectives and opinions represented in this program are those of the author. Subjects covered: aerospace technology, engineering, obsolescence management, marketing, economics and business subject matter. ]

 

Like seeing a mirage in the distance, shimmering sunlight reflects off rows of metal fuselages densely packed in the summer light. A surreal scene of Boeing jet airliners dominates the view, while forming a metallic wall around sections of a regional airport. Boeing_Paine_Field_747_ae3013
Billions of dollars worth of jet airliners are now double parked around Paine Field, Snohomish County Airport, in Everett, Washington. “This development indicates the current success, Boeing is having at landing airliner orders and the result you’re seeing represents a record amount of aircraft production,”said Terrance Scott, a spokesman for Boeing Commercial Airplanes.
He said the Company is leasing this space from Paine Field so that planes can have the remaining work completed and be ready for delivery to their customers — also, this isn’t unique to Everett, but is happening at Boeing manufacturing facilities at Renton Field and at Boeing Field in Seattle.
“Boeing has always been a good neighbor and a fine customer for the airport, they are currently leasing areas to park their aircraft and the revenue generated is appreciated.” said Dave Waggoner, Airport Director at Snohomish County Airport — Paine Field.

Boeing_Paine_Field_BPP_ae7131

                    Boeing_Paine_Field_BPP_ae3009

Boeing_PaineF_BPP_ae7127

 

 

 

 

 

 

 

The global economy’s steady growth has increased passenger traffic, which puts pressure on the airlines to purchase new aircraft for satisfying  demand. Continued drops in jet fuel prices benefits air travel industry profits, giving further incentives for fleet investments. Additionally, with historically low-interest rates, lending institutions find new opportunities in aviation financing, enabling expansion of corporate sales. However, financing for used planes is another matter. Cash is drying up for previously owned jetliners — which puts pressure to part-out, then scrap relatively newer-used aircraft.
Could The New Normal Be Shorter Aircraft Service-Life For Airliner Fleets?
Recently, published reports noted a shift towards an assumed obsolescence and accelerated scraping of newer airliners — well before structural integrity or air worthiness becomes a problem, middle-aged aircraft are experiencing vulnerability to an early end-of-life. Clearly, accelerated scraping of newer aircraft is not due to any structural concerns, but rather, cyclical conditions of the industry. To appreciate these concerns a review of an airliner’s operational lifespan may help clarify some of the issues.
Boeing_Paine_Field_BPP_A3083Boeing_Paine_Field_BPP_A100Boeing_Paine_Field_BPP_a3064
Aircraft manufactures use what is known as pressurization cycles to determine an airliner’s operational lifespan. A pressurizing cycle includes distinct aircraft flight activities — takeoff, climbing until it reaches a cruise altitude and then descending to make a landing. During this process, air is pumped into the fuselage to pressurize the cabin for passenger comfort. This repeated pressurization flexes or expands the fuselage — consequently stress is put on various connecting components, including fasteners and rivets, which holds the structural integrity of the plane together. After a certain number of landing pressurization cycles, stress or metal fatigue can begin to develop, eventually causing small cracks around the fasteners. Pressurization/landing cycles mainly concern the life of an aircraft’s fuselage, wings and landing gear.
The interior of fuselage section, showing perpendicular rings, which are called frames.

The interior of fuselage section, showing perpendicular rings, which are called frames.

Maintenance schedules and lifespan of jet engines are measured in the number of flight hoursAircraft engines, followed by landing gear and then avionics are the most valuable components for part-out and dismantling specialist operations. Ultimately, engine condition is the major factor in an owner’s decision to part-out an aircraft.
For short flights, single or smaller double aisle craft is used to carry passengers, which may go through many landing or pressurization cycles for everyday operations. The more takeoffs and landings, means a shorter operational lifespan for the plane. On long overseas flights, wide body or jumbo jets such as 747s experience fewer landing cycles. These larger airliners, especially ones use for cargo operations can have longer lifespans of upwards of 20 or 30 years. In the U.S., the FAA requires an initial inspection on Boeing 737s, which have 30,000 takeoffs and landings using electromagnetic testing. Mandatory inspections are required for finding cracks in the fuselage or metal fasteners.
Dream_Line_BBP_b7878
Boeing has a history of ‘over-engineering’ components of its aircraft, which is actually a good thing for ensuring passenger safety and for an extended service-life of the aircraft. Historical evidence of this conservative engineering practice is documented in WWII archival film footage of blown-apart B-17s returning from a mission and safely landing. There are more recent examples of Boeing commercial aircraft surviving dramatic inflight catastrophic failures, with most of the passengers and crew landing safely.
Photo-illustration of an aircraft end-of-life center (aircraft boneyard.)

Photo-illustration of an aircraft end-of-life center
(aircraft boneyard.)

Compound Forces Working Against Long-Life-Cycle Aircraft
What are the current forces, which hasten the end-of-life of a commercial jet airliner? Recurring cycles or patterns of economic and technological events influences the commercial aircraft industry on a daily basis.  Various ripple-effects of these cycles can quickly alter new and used aircraft asset valuation. Airline leasing companies have a major influence, in providing their customers with the aircraft assets they need. Unless the buying customer has solid credit, it’s doubtful they can secure financing for previously-owned airliners. Also, tax incentives exist for Airline companies to use depreciation right-offs by decommissioning  all but  the most advance aircraft assets.      Calculator changecphoto illustration
Maintenance requirements are a long-term, yet fluid, financial concern for a company’s airline fleet. The newer designed aircraft are manufactured with significantly fewer parts than previous models. Consequently, reduction in parts has an impact on reducing maintenance expenditures — including smaller service crews, hours spent on inspection and a reduction of overall repairs. Also, spare parts inventories for maintaining the aircraft’s optimum performance can substantially be reduced compared to an older aircraft. The cost savings benefits are compelling incentives for eliminating older, higher maintenance, aircraft assets.
Boeing_Flt_Line_BPP_bg0187
As mentioned previously, the considerable reduction of parts used in manufacturing newer aircraft provides an immediate benefit of up to 20 percent weight reduction. Without compromising strength or aircraft structural  integrity, the cost savings from less weight begins the day an airliner is put into service. Traditionally, fuel-efficiency  is the “holy grail” used for selecting an aircraft — the amount of fuel-burn affects the daily operational cost of an airline company. After a decade of service an older airliner reaches mid-life, it may require upgraded and modification conversions to the aircraft’s wings (winglets) or need new fuel-efficient jet engines. However, this is a threshold of diminishing returns from such investments. As a result, keeping an older aircraft competitive with newer models may not pay-off at a certain point. That’s when retirement and parting-out the airliner begins to make economic sense and the aircraft’s end-of-life management begins.
Boeing_Paine_Field_BPP_ae3134
Inevitable Problems Facing Aircraft Electronic Systems (Avionics) Obsolescence
A critical and perplexing problem facing commercial airliners is how to ensure its critical avionics systems,  evolve and stay up-to-date. Avionics provides the central nervous system or a CPU framework for a commercial aircraft. It’s a marvelous matrix of advanced electronic systems technology, which constantly communicates with itself, the pilots and the outside world.  More so than any other components making up an aircraft’s technological system, its management and functionality duties are beyond comparison. Each year avionics systems physically contract in size, yet they expand immensely in functionality and system management.
Cell_Phone_Tlk_BPP_et82Here’s an example to help clarify this dichotomy of physical contraction and expansion of technical functionality. Your smartphone can be used as a basic representational model for avionics obsolescence. The phone you’re holding in your hand has a superior mobile graphics processor and sheer number-crunching power advantage over IBM’s Deep Blue supercomputer of the late 1990s. Yet, you can hold your phone in hand, compared to Deep Blue, which was the size of a large refrigerator. However, advanced your smartphone is today, a year from now it’ll be obsolete and two years from now… a quaint antique.  If you grabbed your smartphone and considered the example, you just experienced Moore’s law of observation — ‘over the history of computing hardware, the number of transistors in a dense integrated circuit doubles approximately every two years.’                                                                                   circut_board_watch_BPP_a70
Now, imagine trying to update  a complex system such as an airliner’s avionics bay, in five-years, 10-years or 15-years. The installation and the majority of electronic systems are not made by the Aircraft’s original equipment manufacturer (OEM) such as Boeing or Airbus. Moreover, the vendors or suppliers 10 or 15-years from now who were the OEM, could be out of business.  In the meantime, new replacement components may have to substitute the obsolete equipment. However, the aircraft industry is highly regulated by government agencies, which require strict certification of equipment modifications. As a result of these constraints, aircraft manufacturers such as Boeing,  developed obsolescence management strategies to help mitigate these ongoing concerns. But there are always unforeseen obstacles and many moving parts to coordinate before the necessary electronic components are available when needed. Clear, transparent communication is necessary between internal engineering and purchasing departments. Sucessful collaboration at all levels can present major challenges, especially if the objectives and timetables are not each group’s priority.
So aircraft avionics are the vulnerable underbelly of airliner obsolescence — with financial consequences associated with accelerated, technology — necessitating complex and expensive electronic upgrades.
Boeing_747_PF_BPP_a3011
 Airspace Navigation Service Providers (ANSP), which includes the FAA and the European counterpart EASA — have established new mandate requirements for avionics component upgrades. The purpose of this technology is for enhanced data link digital communication, which interacts instantly with aircraft Flight Management Systems (FMS). These requirements include, Automatic Dependent Surveillance-Broadcast (ADS-B), Controller-Pilot Data Link (CPDLC) and the Future Air Navigation System (FANS) enables text messaging and global position through satellite communications. The new civil aviation mandates are part of  the next generation air traffic computer technology called NextGen, which represents air traffic infrastructure’s future for the next 10 to 15 years.
Used Aircraft Components, Harvested For Premium Returns, Is the Retired Airliners Last Call In Service Before Its Final Destination.
Perhaps aircraft boneyards are flying under the radar as virtual gold mines, as refurbished parts are easily sold at market value. The savings of buying used, over new aircraft parts is incentive for expanding the market. Engines, landing gear and avionics are the most expensive components of an aircraft. These prized components are a highly valued commodity and are quickly snapped up. Specialized systems are not manufactured by companies such as Boeing or Airbus, but by outside OEM. Parts sold brand new by the manufacturer are considerably more expensive than buying used.
Money_int _BPP_a223
Next Generation aircraft such as the Boeing 737-600 and even a 737-800, which was reported had a hard-landing, reached their end-of-life as scrap.  Also, Airbus has had similar, newer single-aisle aircraft models reached their final destination in the aviation boneyard.  Aircraft Fleet receivable Association (AFRA) estimates 600 commercial jet airliners are scrapped yearly. By 2023 it’s estimated the number of commercial airliners scrapped will reach 1000 per-year.

.

Efforts Of The Aviation Industry To Leave A Smaller Environmental Footprint.
In 2008, the Boeing Company reached out to Airbus in collaboration, with the goal to vastly improve aircraft recycling technology. Airbus estimates they are recycling 85 percent of the entire aircraft, the remaining cabin interior amounted to 15 percent and was the only materials added to landfills.  World_box_BPP_et424
The best takeaway from the issues surrounding accelerated airliner service-life is that less fuel is consumed by the newer fleets. As older, less efficient aircraft are replaced, a 20 percent reduction in fuel emissions will not enter the atmosphere from the next generation aircraft replacements. If the world’s commercial airline manufactures continue to devote more effort towards efficient recycling of past generation aircraft, we can look forward to clearer skies ahead.                                                                                                                                                                                                  ~

Boeing 747 Euro photo illustration

 

 

 

.
Special thanks to The Future of Flight Museum, for allowing photos to be taken from their excellent observation deck.           http://www.futureofflight.org 

 

Airliner Obsolescence Quiz  (Read the entire question before answering)

1. ) What three economic incentives are currently influencing airlines to purchase new aircraft for satisfying travel demand. ________________________________ _________________________________ & ________________________________

2. ) (True or False) Structural integrity or air worthiness of current generation airliners are the main issue why these aircraft are being retired early. _______ If you answered false, give at least one other reason why this is occurring. __________________________________________________________

3. ) Aircraft manufactures use _____________________ cycles to determine an airliner’s operational lifespan.
4. ) What are three distinct aircraft flight activities used to determine an airliner’s operation lifespan? _________________________ __________________________ ____________________________________________
5. ) Maintenance schedules and lifespan of jet engines are measured in the ________________ hours.
6. ) Aircraft _________ followed by ____________ and then ___________ are the most valuable components for part-out and dismantling specialist operations. Fill in the blanks above by selecting the proper order of component value, using the following list: (bulk heads) (wire bundles) (avionics) (engines) (landing gear)
7. ) Selecting from the choices listed below, which aircraft will typically experience more pressurization cycles and why? A or B ____________ explain why _____________________________________________________________ ______________________________________________________________________ A. Jumbo jet (larger, multi isle aircraft) which is used for longer, overseas flights. B. Smaller, single isle jet airliners, which are used more for shorter, domestic flights.
8. ) Multi-isle airliners or jumbo jets, used for longer international flights or for cargo operations can have longer lifespans of upwards of ____ – ____ years. Select the best match from these sets: 5 − 15, 10 − 15, 20 − 30, 30 − 40 years.
9. ) Explain why a larger commercial jet airliner, which flies longer over sea routes, would have a longer operational life than a smaller aircraft, which is used on much shorter routes? __________________________________________________ ________________________________________________________________________

10. ) What procedure is required by the FAA for a Boeing 737 airliner, which completes 30,000 takeoffs and landings?__________________________________ ________________________________________________________________________

11. ) The newer designed aircraft are manufactured with significantly fewer parts than previous models, list at least two reasons why this is an advantage and would make older aircraft obsolete? ________________________________________ ______________________________________________________________________
12. ) What traditionally has been considered the “holy grail” used by the airline industry for selecting an aircraft? _________________________________________
13. ) When permanent retirement and parting-out the of an airliner begins to make economic sense, what form of management begins for that aircraft? ____________________ Select one of the following: end-of-days, end-of-life, retirement cycle, recycle phase.
14. ) What critical system of an airliner is considered its “central nervous system” or CPU for overall control of the aircraft? ________________________________ Give at least two reasons why this system contributes to a jet becoming obsolete? _______________________________________________________________ ________________________________________________________________________

15. ) Approximately how many aircraft are permanently retired or scrapped in a year? __________________ By 2023, how many aircraft are expected to be scrapped? _______________________________________________________________________

16. ) Regarding commercial aircraft recycling technology, what percentage does Airbus estimate it is recycling of the entire airliner ___ 40 %, 65 %, 75 % or 85 % What percent of the aircraft is not recyclable ___ 60 %, 50 %, 25 %, or 15 % What part of the airliner is not recyclable ____________________ and where does it end up? ___________________________
The answer key is at the very bottom, after program sources & related links 

.
Sources & Related Subject Matter Links
This link shows live air traffic anywhere in the world. View how congested the sky’s are over the world’s busiest airports.

http://www.flightradar24.com/47.79,-122.31/7

 

Aircraft Bluebook – Used for aviation asset valuation

http://www.boeing.com/assets/pdf/commercial/aircraft_economic_life_whitepaper.pdfhttp://marketline.squarespace.com 

http://www.boeing.com/boeing/companyoffices/aboutus/brief/commercial.page

http://www.airbus.com/innovation/eco-efficiency/aircraft-end-of-life/

http://www.airspacemag.com/need-to-know/what-determines-an-airplanes-lifespan-29533465/?no-ist

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/ObsolescenceFinalReport.pdf

http://aviationweek.com/awin/nextgen-obsolescence-driving-avionics-refurbs

http://www.theguardian.com/business/2013/jun/11/boeing-commercial-planes-double-asia-pacific

http://www.airliners.net/aviation-forums/general_aviation/read.main/5740876/

http://avolon.aero/wp/wp-content/uploads/2014/06/Aircraft_Retirement_Trends_Outlook_Sep_2012.pdf

Article & photos on U.S. aircraft boneyards

http://www.johnweeks.com/boneyard/

 

 

http://www.dailymail.co.uk/sciencetech/article-2336804/The-great-aviation-graveyard-New-aerial-images-hundreds-planes-left-die-American-deserts.html
Article, photos & interactive map of U.S. aircraft boneyards
http://www.airplaneboneyards.com/commercial-aviation-airplane-boneyards-storage.htm
Excellent aerial video of Airplane Graveyard (Mojave Airport, California)
http://www.youtube.com/watch?v=6RjaoR7Zk2s
Future of Flight Museum -

Future of Flight Museum

Airliner Obsolescence Quiz Answer Key

1. )  Satisfying increased travel demand Fuel cost savings  &  Historically low-interest rates for financing new aircraft
2. )  True Newer aircraft are replacing airworthy, older aircraft due to much less operating cost, including fuel savings and maintenance issues.
3. )  Pressurization or Landing cycles
4. )  Takeoff Climbing to cruise altitude Landing
5. )  Number of flight hours
6. )  Engines  landing  gear avionics
7. )  B Shorter service routes typically involve more landing and takeoffs as the airliner satisfies domestic travel demand
8. )  20 − 30
9. )  An airliner flying overseas route would most likely have fewer takeoffs and landings, due to the longer flight time required to reach its destination
10. )  Electromagnetic testing for finding cracks in the fuselage or related components
11. )  Fewer parts can result in an airliner weighing up to 20 percent less than older models, which can correlate to the same percentage of fuel savings. The maintenance cost is substantially lower allowing for more savings over older aircraft with more component parts.
12. )  Fuel-efficiency
13. )  End-of-life
14. )  Avionics electronic components used for avionics may not be available or upgradeable due to obsolescence upgrading obsolete avionics may require expensive redesign
15. )  Up to 600 1000
16. )  85 %   15 %   Cabin interiors Landfills

  [contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

 

The Environment, our Earth’s Lost Frontier?

22 Apr

 

Arctic_Tundra_Oil_Field_e1003

(On the left horizon, hydrocarbons are being released into the air, blemishes an otherwise clear arctic day.)

Multimedia eLearning by: David A. Johanson © All Rights

All Roads Lead to Nowhere

Early in my career as a photographer I received assignments which took me above the Arctic Circle. Construction companies and architects working for oil companies in Alaska’s North Slope hired me to photograph their on going developments. At that time the Prudhoe Bay oil field’s production had peaked due to years of sustained extraction. A new oil field near the Kurparuk River, west of Prudhoe Bay was the site I was sent to. The Kuparuk oil field is the second largest oil field in North America by area, and traveling by aircraft was the way I moved from site to site.

Roads and construction sites above the arctic circle, rely on heaps of gravel placed over the tundra’s surface to prevent them from sinking into the earth when the ground thaws. Traveling less than 100 feet off the tundra, at 150 miles per hour, the pilot of the Hughes 500D helicopter races to horizon. The orange shelters at the edge of the road, is our intended destination. These metallic enclosures are used to pump hot steam down-into the wells, for recovering a thick slurry of oil, locked deep below the frozen tundra.

Envirn_Indust_BPP_e0014

Arctic_const_Workers_A1104

Environmental stock photography for a New Dawn.

Alaska, the Last Frontier  

Flying above an older oil facility, it can clearly be seen — the years of oil production have left Rorschach-like-ink-blots, splattered on the surrounding tundra. I have not been to the oil fields for many years, but I was told at the time — ‘oil companies were trying to cleaning up their act, while leaving a smaller footprint.’ I pray what I heard was true, but as we know — accidents both large and small continue to happen.

On a clear day while flying above vast stretches of tundra, we spotted a small monument, which marked where Will Rogers and Wiley Post had been killed in a plane crash. I spotted dozens of randomly placed metallic cylinders near the site. My bush pilot brought the airplane down for a closer look and cynically said, those are abandoned, empty 50 gallon oil barrels… known as —“Alaska’s state flower.

 Environmental stock photography for a New Dawn.

An old barn in the shadow of Anacortes oil refinery.
There’s something charming about old barns as they weather over the years. This one with its organic wood earth tones, is contrasted against the metallic cylinders of an oil refinery in Anacortes, about 70 miles north of Seattle, on the edge of Puget Sound. On April 2, 2010 five workers were killed at this oil refinery as an explosion and fire ripped through part of the refinery.

EARTH Day seems to have more meaning as the impact of global warming, seismic and volcanic activity focuses our attention on the big picture.

Environmental stock photography for a New Dawn.

Our world is delicately balanced, spinning through space, with us all aboard along for the journey. At least one day, one week, out of a busy calendar year, we’re asked to give homage to our planet by being aware of its’ environment. In honor of this day, I’m sending out photographs and prose that reflect current events affecting our world’s environment.

30756_1424678490440_7205732_n

Earth Day 2010

“One World, One Planet.”
A fascinating, outdoor setting, with an incredibly diverse ecosystems is the Rainforest of the Olympic National Forest. It was a late summer day when I hiked down form Lake Osset, to where the rainforest meets the Pacific Ocean. This area has never been logged, the old growth forest here stands as it has for thousands of years.

After setting up a tent I walked along a trail leading to a lush meadow. A twig snapped a few feet away from me, revealing two unusual looking deer, grassing in the tall grass. Never have I encountered wildlife, where if I desired, could reach out and touch it. The deer could plainly see me; yet they made no effort to scramble away or even conceal themselves. The reason this wildlife seems tame is that they reside within a remote National park, where no hunting is allowed.  Slowly, I raised my camera loaded with my favorite Kodachrome transparency film. As I began to take a series of photos, I noticed unusual patterned markings on the deer’s body.  Refocusing my lens, amazingly, what appeared was a map of the earth, patterned on the deer. Last year I scanned the transparency, then enhancing it with Photoshop, the world continents clearly revealed themselves in what I’ve themed
– “One Planet, One World.”

Cabin_June_27BPP_2010_348

Have you ever gone back to a place and found what you had once treasured was missing? The longing for beauty, which once was, is a reoccurring theme used to select many photos in this essay.

Pearl_Harb_VC_BPP_a1406

Earth Day 2010

“Paradise Lost” –
The enchanting scene with a man gazing into the pools of water is from Whatcom Falls. My college roommate sitting on the moss-covered boulders is Mark Nishimura, a fine-art photographer, originally from the state of Hawaii. Mark asked that I photograph him in a place that was reminiscent of the waterfalls back home on Ohau. I used a Hasselblad and slow speed transparency film to help capture the dynamic range of shadows and highlights. This was one of my favorite places to photograph when I attended school at Western Washington University, in Bellingham. Many students would spend summer afternoons cooling off, diving and swimming amongst the deep pools of water. A short walk into Whatcom Park, placed you in a lush environment, under a thick canopy of evergreen trees, moss-covered vegetation with sounds of cascading waterfalls running throughout it.  Environmental Photography

Some years after this photo was taken, tragedy struck, instantly incinerating this charming environment. A refinery’s 16-inch fuel-line running next to the park, ruptured, spewing nearly 300 thousand gallons of gasoline into the creek. In an instant, the fuel ignited, creating a river of fire, which killed three youths fishing in the creek and sending a toxic vapor cloud six miles into the atmosphere. The fireball and plume of smoke was visible from Anacortes to Vancouver, B.C., Canada.  Now, ten years after the catastrophe, I plan to return to the falls and photograph the site with hopes that nature’s healing process is transforming it back to the way it use to be.

Environmental Photography

Environmental Photography

Environmental Photography

Earth Day 2014

“Paradise Found” –
I remember a photography teacher I had in college took us to a beach near Chukanut Drive. When he gave out the assignment, most of the class groaned; we were to pick a spot on the beach, stay within a 25-foot diameter and shoot a series of photos to tell a story. Most of us wanted to take our cameras and explore what the entire beach had to offer. Surprisingly, it was one of the best assignments I was ever given in school; because it broke the stereotype about how you were suppose to see. Within that small domain we discovered, a whole universe was waiting to reveal itself before the camera lens. That photography lesson has stuck with me since, although world travel is a passion, I realize that I really didn’t have to go any farther than my backyard to find great images and no matter what, if resourceful, amazing subjects can be found everywhere.

My home’s back yard is like an outdoor studio full of indigenous plants, birds and amphibians. We avoid using pesticides and only use natural fertilizers on the yard and garden. One afternoon I found this charming tree frog sitting on a leaf, warming itself in the sunshine. With a macro lens on my camera, I was able to get within inches of the frog and let the background merge into soft abstract forms. The photo makes me smile whenever I see it because it reminds me, I never have to go far to reconnect with nature.

Environmental Photography

On a moonlit night, traveling the back-roads of Washington and Oregon —
we found countless sentinels standing guard against the cold breeze of darkening skies.

Environmental Photography                  

The Future is Now…
Working tirelessly with the wind, turbines spin against the moon backdrop, producing ‘clean energy’ for the Pacific Northwest. Throughout the Americas and many other places in the world, the tide is turning as we move more towards wind and solar for a clean, renewable energy source.

World_box_BPP_et424

Web Links For Earth Day 

http://abclocal.go.com/wls/story?section=news/local/illinois&id=9511926

http://newyork.cbslocal.com/2014/04/22/tri-state-area-commemorating-earth-day-with-series-of-events/

http://www.earthday.org

http://news.nationalgeographic.com/news/2014/04/140421-earth-day-2014-facts-environment-epa/

http://www.slate.com/blogs/bad_astronomy/2014/04/22/earth_day_2014_a_few_fun_facts_about_our_planet.html

 

 

THE MARTIAN PROPHECIES: Earth’s Conquest Of The Red Planet

12 Mar

Mars Frontier series

Early Mars terraforming site inspected by an American first-generation colonist.
Essay, eLearning program, and multimedia content by: David Anthony Johanson © All writing and photography within this program (unless indicated) was produced by the author.
If you would like to see this essay in an alternative graphic format please visit our Science Tech Tablet site at: http://bigpictureone.wordpress.com/2014/03/04/the-martian-prophecies-earths-conquest-of-the-red-planet/
Fu-tur-ism                                                                                                                               noun
1. Concern with events and trends of the future or which anticipate the future.
Any sufficiently advanced technology is indistinguishable from magic. — Arthur C. Clarke
.
How Earth Conquered Mars And Successfully Colonized The Red Planet
March 2054

Mars Frontier series

.

.

.

The Evolutionary Mastery Of Mars
In a forty-year period, the march towards making Mars inhabitable, astonished the most optimistic futurist. A sequence of technological events and economic opportunities (commonly known as the Third Industrial Revolution) converged seamlessly, allowing for safe and efficient journeys to the fourth planet from our Sun. Now, human life has sustained itself and is beginning to thrive on Martian soil.
On Earth, three decades into the third millennium, unstable global weather patterns caused by environmental abuse to our oceans, created extreme ripple effects with appalling famines and droughts. Then, suddenly a horrific rain of fire appeared as a sequence of catastrophic meteorite strikes plagued Earth— hastening humanity’s efforts to reach for the red planet. Of all the planets in our solar system — Mars has proven the best hope as a lifeboat and as a refuge for life taking hold.
Collaboration from the World’s nations, aligned rapidly to expand the colonies beyond Earth’s low-orbit. These outposts are in a stable formation at Sun-Earth Lagrangian Points:  L2, L4,  L5 and beyond. The various sites are used to support manufacturing, exploration and asteroid mining operations. Once established, they became “stepping-stones” towards Mars. Distant supply and launch stations are currently expanding at Sun-Mars Lagrangian points, circulating Mars.

mars-map

Triumph Through Large Scale Asteroid Mining 
After the first three decades of daring space exploration in the late Twentieth Century, momentum was lost from lack of compelling mission. Chemical propulsion system limitations and lack of aerospace manufacturing beyond Earth’s orbit, slowed space exploration’s progress. Major superpowers lacked funding and political will to achieve great advances beyond low Earth Orbit.
As the Twenty-First Century progressed, collaboration of prime aerospace companies Boeing and Space X, developed, hybrid launch vehicles to accelerate humanity’s expanded presence in space. Private commercial ventures determined a great potential existed for mining valuable resources from near Earth asteroids and the Moon. The first company to successfully begin asteroid mining were Planetary Resources, with funding provided by wealthy technology luminaries.

Mars Frontier series

 

.

.

.

.

.

.

.

.

Mars Frontier series

.
Three-D Printing In Space – A Bridge To Infinity 
Early in the Twenty-first Century, new advanced technological tools were developed for flexible and efficient manufacturing. After revolutionary 3-D printing operations took hold in space, opportunities expanded rapidly to develop massive infrastructure beyond Earth’s orbit. Three-D printing devices made prefabrication of immense living and working sites possible on the Moon and various stationary points well beyond Earth’s gravitational influence.

.

Three-D printing for manufacturing space-station stepping-stones
.
Beyond Earth’s Orbit — Islands In Space
As the population of human enterprises rapidly expanded into deep space, exploration of Mars became practical and irresistible.
Using a spectrum of cybernetic applications, including artificial intelligences (AI), atomically precise manufacturing (APM) and 3-D printing provided cost-effective infrastructure manufacturing  to expand beyond Earth’s low orbit. The network of space station developments offers a growing population of skilled aerospace workers — dynamic living and work environments.
Molecular nanotechnology (MNT) produces an endless variety of manufactured goods for the inhabitants of interplanetary space. As the initial space stations quickly expanded and connected to one another, they became known as “Island Stations.” Adopting interplanetary codes for infrastructure support commonality is maintained for all inhabitants and guest visits by the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
A network of stepping stone islands, which initially were used to extend the reach of asteroid mining operations from stable points beyond a low Earth orbit, is essential for colonizing Mars.

Mars Frontier series

Approximately 10 million miles from Earth, a network of station islands is positioned as a gateway point to Mars. These station networks are mutually protected from solar storms/flares by their own artificial magnetosphere. Earth (blue dot) and its moon can be seen near the upper-center part of the photo.

Mars Frontier series

Revolution — Electro Magnetic Propulsion And Magnetic Shield Protective  Fields 
Revolutionary, electromagnetic propulsion systems, using super-cooled, conducting magnets and magnetoplasmadynamic (MPD) were developed for vastly superior performance over conventional chemical rockets. The time required to reach destinations such as Mars has been reduced significantly, by a factor of one year to less than two weeks. Initial funding from NASA and ESA, created a collaboration between Boeing, SpaceX and Virgin Galatic to produce these hybrid propulsion space craft. http://www.cbsnews.com/news/boeing-spacex-to-team-with-nasa-on-space-taxi/
The greatest threat to human space travel and colonization is from solar winds of magnetized plasma carrying protons and alpha particles, which can
Mars Frontier seriesbreak down DNA and lead to cancer. A magnetic coil shield system allows space craft protection from most harmful radiation by creating its own magnetosphere. This shielding system harnesses for universal applications to protect space station populations, inner planetary travelers and Martian colonies.
A high energy accelerator was developed on Mars using spectrums of solar energy to recreate a magnetic field to help produce a sustainable atmosphere.
Mars Frontier series
   An electromagnetic propulsion cargo ship as it begins entering a high energy state.

Mars Frontier series

 

Electromagnetic propulsion “asteroid lifter” encounters solar wind storm.   

star_lifter_bpp_a2054

solar_system_jpeg

NASA illustration.

evo_bio_424

Genetic Modification Through Astrobiology Provides Essential Benefits For Human Space Travelers
Evolutionary biology has provided advantages to meet the challenges of human travel into deep space.
The first generation of genetically modified humans was created to  limit the effects and risk from extended space travel. Microchip circuitry imbedded into tissue, gave humans expanded capabilities to assure space survivability, productivity, and flight operations. To combat muscle degradation from zero gravity-exposure, contractile protein levels were increased in muscle tissue.

.

Settlements On The Red Planet And Stages Of Terraforming
To survive solar radiation effects, early Mar’s settlers lived bellow the planet’s regolith (soil). Within less than a decade, the colonies developed their own localized magnetosphere, which became encapsulated environments within translucent domes — creating an atmospheric oasis. These aerodynamic structures offer shielding from dust storms and subzero temperatures. Now, an enriched quality of life on Mars includes ever-expanding domains of Earth like atmosphere for expanded development and life above the surface of the red planet.Meteor showers streaming above craters and cliffs during a Martian sunrise.
Meteor showers streaming above craters and cliffs during a Martian sunrise.

Mars Frontier series

Massive mirrors are fixed in orbit above Mars for reflecting warmth back onto its surface, to provide a more temperate climate. Reflected light directed at Martian polar ice caps and its Carbon dioxide atmosphere of CO2 helps to keep thermal energy near the planet’s surface. As a result, a thermal runaway greenhouse effect is created to help build a thicker atmosphere. Release of microorganisms on the red the planet dramatically accelerates production, for intensifying greenhouse gas expansion.
Directing small asteroids with rich concentrations of ammonia to impact nitrate beds on Mars, releases high volumes of oxygen and nitrogen. These highly controlled asteroid strikes are providing substantial positive results to help develop an enriched atmosphere.

French_man_Coule_BPP_aerp61

Nanotechnology is now employed on the surface of Mars and is dramatically altering landscape regions within various craters. Genetically modified plant forms are successfully taking hold and surviving some test environments. In conclusion, all of these achievements are creating a more Earth like climate, for efforts to terraform Mars.

.

Earth’s Sustainable Community On Mars
Self replicating machines using APM manufacturing allow infrastructure to develop at astonishing rates on the red planet. New scientific, engineering and mining communities are establishing themselves rapidly as they descend from orbiting stations and stationary platforms above the planet. The current population on Mars has surpassed 40,000 inhabitants and is projected to double within the next five-years.

Mars Frontier series

The form of governance adopted by the colonies on Mars is based on a nonpolitical and international form of cooperation.  Asteroid mining and APM manufacturing are the largest industries associated with the Mars colonies.

Mars Frontier series                

   .      

 Martian colonists celebration party for “Pioneer Days.” Martian sunset seen in the background, behind a massive protective atmospheric shield.

.

Fossil Bed Enigma Reveals We May Never Have Been Alone
Found only days ago in the Antoniadi Crater region, is evidence of a fossil and what appears to be human like footprints. Although this discovery may revolutionize our view of the red planet — we must wait for the samples to arrive on Earth to confirm what could be one of the greatest discoveries of all time.

Mars Frontier series

Discovery at a Martian archeological dig site — “we have never been alone.”

Mars Frontier series

.

.

.

.

.

.

Mars Frontier series

Perchance, the most fascinating evidence of preexisting intelligence of life on Mars, was discovered near the Antoniadi Crater. Enclosed within a geographic site is a source, which is emitting peculiar magnetic fields. Upon further analysis revealed, distinct patterns of what appears as a mysterious complex digital codex. After extensive review and evaluation using a network of 2020 Enigma Genisus Computing system interpreted it as audible, instrumental sounds accompanied by visual projections of humanoid syncopated movements.BoC video See Ya Later
Most perplexing is the referenced quantitative variables, suggest the site was or is a time capsule or possibly a time-portal. To see the reference audio and visual projection, click on the link below. https://www.youtube.com/watch?v=53bCaqz0zZA
Music soundtrack for the Martian Prophecies — Powered by Boards of Canada (you can open another web browser if you’d like to have the following music play while viewing this essay)
Solar System & Planetary travel, music  http://www.youtube.com/watch?v=3l_IMOweP0E
Martian pioneers’ celebratory music  http://www.youtube.com/watch?v=4jBzl–TN1Q   and or http://www.youtube.com/watch?v=PYEZueAelKc  
Music for terraforming Mars to   http://www.youtube.com/watch?v=qthHlLyvplg
A canopy of stars floats above the Monuments of Mars site, just as "Vesta 2"(support station) enters the view, reflecting solar light in its West-East orbital path.

Martian moonlight illuminates sculpted cliffs, as “Vesta II” (logistics platform) enters view —piercing the night sky with solar light reflecting off its West-East orbital path.

Facts Concerning Mars
One day on Mars = 24 hours 37 minutes and 22 seconds.
One year on Mars = 686.98 Earth days.
Average distance from Earth to Mars = 225 million kilometers.
The minimum distance from Earth to Mars = 54. million km.
The farthest distance from Earth to Mars = 401 million km.
Warmest temperature of Mars — 70 degrees F (20 degrees C) near the equator
Origin of the name Mars = Ancient Roman god of war and agricultural guardian
The calendar Month named after Mars = March
Links to Learn More About Mars
http://www.wired.com/wiredscience/2010/01/gallery-mars/
http://cbhd.org/content/whose-image-remaking-humanity-through-cybernetics-and-nanotechnology
http://www.jpl.nasa.gov/missions/
http://www.nasa.gov/vision/space/travelinginspace/future_propulsion.html
http://physicsworld.com/cws/article/news/2008/nov/06/magnetic-shield-could-protect-spacecraft
http://www.slate.com/blogs/quora/2013/09/12/outer_space_can_we_make_mars_or_venus_habitable.html
http://en.wikipedia.org/wiki/List_of_private_spaceflight_companies
http://www.forbes.com/sites/brucedorminey/2013/05/29/can-mars-be-terraformed-nasas-maven-mission-could-provide-answers/
http://en.wikipedia.org/wiki/Lagrangian_point
http://www.applieddefense.com/wp-content/uploads/2012/12/2001-Carrico-Sun-Mars_Libration_Points_And_Mars_Mission_Simulations.pdf
http://www.thespacereview.com/article/2305/1
http://blogs.discovermagazine.com/crux/2014/09/08/where-build-off-world-colonies/#.VGp-1BYexjk
http://www.nss.org/spacemovement/greason.html
http://web.mit.edu/sydneydo/Public/Mars%20One%20Feasibility%20Analysis%20IAC14.pdf
A list of over 400 essays on Mars http://www.123helpme.com/search.asp?text=mars

 

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

An Introduction Guide to Steampunk

2 Oct
Multimedia eLearning essay by: David Anthony Johanson  © All Rights
Steampunk is a wonderfully curious subculture — percolating with creative optimism, healthy playfulness — an inventive postmodern science fiction genre, which blends Victorian era, 19th Century alternative history with contemporary technology.
Goggles are a popular accessory for Steampunk practitioners.
Goggles are a popular accessory for Steampunk practitioners
A sub-genre of science fiction — Steampunk appears as if caught in some strange time warp. The practitioners of this loosely knit community of post-industrialist feature Victorian era clothing along with accessories such as goggles, intricate antique jewelry incorporating watch gears and a wide spectrum of retro-futuristic attachments.
Steampunk has remained under the radar of mainstream media, which is surprising since it’s one of the fastest growing cultural trends in recent memory! Now reaching the tipping point, this curious lifestyle movement is beginning to influence mainstream media, major retail and fashion labels.
Hand crafted, often one of a kind Steampunk jewelry is sold by vendors at the festival.
Hand crafted, often one of a kind Steampunk jewelry is sold by vendors at the festival.
Hand crafted, repurposed products, which uses wood, glass and metal (especially brass) are associated with the Steampunk movement. Manufactured plastic materials are rejected and viewed with contempt at Steampunk social gatherings.
Steampunk fashion or clothing is an eclectic mashup of Victorian era and Art Nouveau styles.

Steampunk fashion or clothing is an eclectic mashup of Victorian era and Art Nouveau styles.

Steam_punk_Fairhaven_BPP_2013_w 1

 

Steampunk Etymology   

Steam_punk_Fairhaven_BPP_2013_w 10
Although SP is a postmodern hybrid genre, Victorian era writers associated with its original inspiration are: H G Wells, Jules Verne and Mary Shelly. These 19th Century, vanguard novelist inspired future generations of science fiction writers, which throughout the 20th Century created new genres of their own.
Steampunk is not directly associated with the British Royal Monarchy of Queen Victoria (ruled from 1837 until 1901). The Victorian era is a convenient reference for what symbolizes the advancements made during the Industrial Revolution. Steam_punk_Fairhaven_BPP_2013_w 8
This era had the greatest technological developments of the 19th Century, including: massive agricultural output, wide distribution of railway systems, steam turbine engines (for world commerce and travel.), development and wide scale utilization of electrical power, telecommunications including ( telegraph, telephone and wireless radio) and the automobile’s internal combustion engine.
 Steam_punk_Fairhaven_BPP_2013_w 11
Regarding western social economics, the Victorian era sees for the first time, a middle class emerging, which establishes an expanding consumer based society. Trade unions are allowed to flourish, leading to greater protection for workers, including women and children. Human rights in general make huge advancements as slavery is eliminated in most of Europe and North America.
The actual term Steampunk derives from the science fiction genre — cyberpunk, which emerged in the early 1980s. In 1987, science fiction author K. W. Jeter, wrote a letter to science fiction magazine Locus, using the term, ‘steam-punks’, in describing an emerging science fiction genre inspired by Victorian fantasies.                    
Steampunk vendor shows off his hand crafted wares.
Steampunk vendor shows off his hand crafted wares.

Finding Steampunk Festival Events

When I first attended Western Washington University in Bellingham, I marveled at its charming neighborhood of Farhaven — a historic district with Victorian and Edwardian style brick architecture. A couple of summers ago I returned to Fairhaven in mid-July to sightsee. To my delight the first Fairhaven Steampunk Festival was in full swing and provided the photos used for this article.
Historic Fairhaven District has many fine examples of late 19th century architecture, including this multilevel wooden stairway
The Historic Fairhaven District has many fine examples of late 19th century architecture, including this multilevel wooden stairway
Beautifly proportioned brick buildings make for an ideal backdrop for a steampunk fesitival.
Beautifully proportioned brick buildings make for an ideal backdrop for a Steampunk festival.

Steam_punk_Fairhaven_BPP_2013_w 14

Steampunk Cinema & Television

A partial list of films which have Steampunk elements or themes
Metropolis – Fritz Lang Director (1927)
20,000 Leagues Under the Sea – Starring Kirk Douglas (1954)
Wild, Wild, West – CBS Television Series (1965-69)
City of Lost Children – Starring Ron Perlman (1995) 
Wild, Wild, West – Starring Will Smith, Kevin Kline & Salma Hayek (1999)
The league of Extraordinary Gentlemen – Starring Sean Connery (2003)
Steamboy – Japan’s most expensive animated film ever made, 10 year production (2004)
Golden Compass -Starring Nicole Kidman (2007 Film)
Sherlock Holmes 2: A Game Of Shadow – Starring Robert Downey Jr. (2011)

 

STEAMPUNK Personas

Scientist,
Aristrocat
Adventure
American Wild West
Steam Punk Film

To Learn More About Steampunk, Click On The Links Bellow

The Nine Novels That Defined Steampunk | The Steampunk Workshop

What is Steampunk? | Steampunk.com

HowStuffWorks “How Steampunk Works”

What is Steampunk? History and Culture that Define Steampunk

A History of Steampunk, Part 1 – Definitions | Jay Kristoff – Literary Giant

Steampunk – Wikipedia, the free encyclopedia

Why Defining Steampunk Is Worthwhile « Steampunk R&D

What Is Steampunk?

Steampunk Scholar: Defining Steampunk

Steampunk 101 | Tor.com

Get Ready for Mainstream Steampunk | 5 Reasons You’ll Be Talking About Steampunk in 2013 | TIME.com

Steampunk Magazine

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

 

 

How Did Rome’s Vitruvius, Become The World’s First Subject Matter Expert (SME) on Architecture?

2 Aug
An example of a variety of architectural styles influenced by Vitruvius. Florence, Tuscany Region, Italy. Photo by: David A. Johanson ©

An example of a variety of architectural styles influenced by Vitruvius. Florence, Tuscany Region, Italy. Photo by: David A. Johanson © All Rights Reserved

Multimedia eLearning essay by: David Anthony Johanson © All Rights

To see an alternative graphic view of this essay please visit: www.BigPictureOne.wordpress.com  

If you would like to experience some ancient Roman music while viewing this essay, open one more browser and click on the  Roman music link provided below (Synaulia III, has Latin signing and soothing melodies)

Architecture is the art which so disposes and adorns the edifices raised by man for whatsoever uses, that the sight of them contributes to his mental health, power and pleasure. Aphorism 4All architecture proposes an effect on the human mind, not merely a service to the human frame.  — From John Ruskin’s – The Seven Lamps of Architecture  ————————————————————————————————

 

The first historic footnote of Marcus Vitruvius Pollio, was not as an architect — but of his military engineering service for another overachiever,  Julius Caesar.

Vitruvius first job description involved being in charge of a Roman legion’s heavy artillery —the terrifying Ballista or catapult. Ironically, this future architectural genius was responsible for destroying opposing structures that came before his weapons of mass destruction. You could say, Vitruvius, literally had a major impact on architecture throughout the arc of his careers.

Rome_Soldier_BPP_eg100_0129

Vitruvius’ date of birth is recorded around 90 B.C. and apparently the recipient of a broad-minded education —

The floor plans from a Greek House - Vitruvius. Peterlewis - wikipedia project - image free to use with no copyright restriction

The floor plans from a Greek House – Vitruvius. Peterlewiswikipedia project – image free to use with no copyright restriction

science, mathematics, drawing, music, law, rhetoric and history. He is believed to have  apprenticed with a Greek architect, which gave Vitruvius the basic foundation and qualifications for becoming a subject matter expert (SME) on architectural principles.

Vitruvian Man by Leonardo de Vinci was named after & inspired by Vitruvius.   —This work is in the public domain in the United States, and those countries with a copyright term of life of the author plus 100 years or less.

Vitruvian Man by Leonardo de Vinci was named after & inspired by Vitruvius. —This work is in the public domain in the United States, and those countries with a copyright term of life of the author plus 100 years or less.

It’s speculated at the time Vitruvius began circulating his writing, wealthy Roman citizen’s private libraries were accessible to him for specialized study in architecture and engineering.

An upheaval caused by the Empire’s civil and foreign wars channeled Vitruvius’ professional direction towards engineering military machinery. It may have seemed like an irony to him that his skills were being used to destroy architecture, rather than create it.

Contrary to popular belief, the Romans liberally used color & brick instead of marble.  -Herculaneum, Campania Region, Italy.

Contrary to popular belief, the Romans liberally used color & brick instead of marble. -Herculaneum, Campania Region, Italy.

Hercu_laneum_BPP_g140

         

Julius Caesar's father-in-law residence - Villa of Papyri is located at Herculanieum, which was buried along with the city of Pompei, by the volcano Vesuvius, seen in the upper top frame.

Julius Caesar’s father-in-law residence – Villa of Papyri is located at Herculanieum, which was buried along with the neighboring city of Pompeii in 79 A.D., by the volcano Vesuvius, seen in the upper top frame.

                       .

.

OPPORTUNITY OPENS A DOOR FOR VITRUVIUS’ CAREER IN ARCHITECTURE

Following the assassination of Emperor Julius Caesar in 44 B.C., Vitruvius found employment with Caesar’s nephew and successor —Octavian. Another decade of Roman civil war and the eventual defeat of Marc Anthony and Cleopatra at the Battle of Actium in 31 B.C., led to a Pax Romana (Latin for “Roman peace.”)                                 Rome_Archt_BPP_et1113       

With Octavian as the undisputed ruler of the Empire, he was granted a new title — Augustus, the Emperor of Rome. Augustus channeled Rome’s wealth towards cultural, civic and public works development. This reinvestment for Rome’s glory, eventually gave Augustus bragging rights, as he is quoted, ‘I found Rome built of bricks; I leave her clothed in marble.’

An example of Roman ingenuity is in using brick for most of a building's construction, then a facade of marble or limestone is applied and finally followed by vibrant color applications.

An example of Roman ingenuity is in using brick for most of a building’s construction, then a facade of marble or limestone is applied and finally followed by vibrant color applications.

 

Augustus’ civic benevolence finally created an opportunity for Vitruvius’ great engineering and architectural contributions to move forward.

As the saying goes — behind every great man there is a great woman. It’s Augustus’ sister, Octavia, who sponsors Vitruvius to write the architectural treatise. Officially, the Books of Architecture are dedicated to Augustus, who uses them wisely to help create a marvelous metropolis.

The white outline of the architectural structure show where the colors were applied — from inside a residence at Herulaneum site, Italy.

The white outline of the architectural structure show where the colors were applied — from inside a residence at Herulaneum site, Italy.

Interior of residence in Herculaneum. Mosaics were used to bring the outside world indoors.

Interior of residence in Herculaneum. Mosaics were used to bring the outside world indoors.

Mosaic tile in the ancient port city of Ostia Antica, Lazio Region, Italy.

Mosaic tile in the ancient port city of Ostia Antica, Lazio Region, Italy.

Vitruvius, throughout his career keeps a low profile, perhaps due to observing what envy and jealousy could inflict on the Romans who attempted to shine too brightly.  

Statue in the ancient port city of Ostia Antica, next to the Tevere River, Italy.

Statue in the ancient port city of Ostia Antica, next to the Tevere River, Italy.

Cross section of Rome's Coliseum - The World's first 'super dome.'

Cross section of Rome’s Coliseum – The World’s first ‘super dome.’ This two-thousand year old stadium remains in use with major music concert & various public events.

.

.

.

.

.

.

PAST NONCONFORMING STANDARDS IN ARCHITECTURE THREATENS ROME’S RENOVATIONS 

In antiquity, Hellenistic Greek architecture sets the standards for beauty, quality and form. The Greeks, inspired by much older civilizations established around the Mediterranean, refined architecture to its classical ideal.  However, precious little had been written down regarding the styles and standards of Greek architecture, until Vitruvius ambitious efforts were realized.

Ruins at Ostia Antica, near Rome, Italy.

Ruins at Ostia Antica, near Rome, Italy.

As an effect from lack of architectural standards, instructional integrity of buildings could result in disastrous consequences, as well as the aesthetic value of religious, civic and private buildings.

Ionic style capital on top of column

Ionic style capital on top of column

Ancient Rome's Forum 3D, computer generated image  Image Created by: Lasha Tskhondia - Creative Commons Attribution-Share Alike 3.0 - Some Rights Reserved.

Ancient Rome’s Forum
3D, computer generated image
Image Created by: Lasha Tskhondia – Creative Commons Attribution-Share Alike 3.0 – Some Rights Reserved.

Vitruvius efforts of researching classic Greek architectural techniques and styles developed  into a comprehensive series of books on the methods and theories of architecture. These guiding books on style, function and practice,  served as a foundation for architects and engineers for over two thousand years and are still observed today.  

Rome Forum

Rome Forum

Cross section of Forum

Cross section of Forum

Remains of Rome's Forum

Remains of Rome’s Forum

How Did Rome’s Vitruvius, Become The World’s First Subject Matter Expert (SME) on Architecture? —More to be uploaded on Vitruvius in the coming days.

Links to learning more on Vitruvius

http://blogs.nd.edu/classicalarch/2012/09/28/many-canons-many-conversions/

http://en.wikipedia.org/wiki/Vitruvian_Man

http://www.bostonleadershipbuilders.com/vitruvius/

How about some ancient Roman music to enlighten your day? Click on the link below ↓

http://www.youtube.com/watch?v=X83IYWmcEFg&list=RD020MwBCorqBW0

——————————————————

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Is Space Law Really That Far Over Your Head?

29 May
Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  
 Part 1 of 2 Editions – To see an alternative graphic view of this story see: Space Law | bigpictureone                                                                 
Students and instructors are encouraged to use the visual cues imbedded within the text to quickly locate key information.
Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it has had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens. 
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing overtime through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new, dimensions as needed.
There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.
Back To Rocket Science Basics.
The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins attached near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. A German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass production. Used by the German military towards the end of World War II, the V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.   http://www.v2rocket.com/start/makeup/design.html
The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 83 to 93 km (52 to 60 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.
— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.
First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.

First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army

American scientists, James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army

Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

What Goes Up, Must Come Down.
Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.
Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Because so many languages are involved with these international agreements, terms used in Space Law often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.
Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.

Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.

Cuba Gives A New Meaning To A Cash Cow.
Case Study:  In November of 1960, the second stage of a U.S. Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Dramatic Rocket Launch Failures Associated With Space Exploration.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rush reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957. WA Okang SatDshBP_e1103
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath.    Disaster at Xichang | History of Flight | Air & Space Magazine
Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and spaceports are geographically chosen to mitigate rocket launch accidents .   US rocket disasters – YouTube
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.
VLS-3 rocket, launch  – August 2003, Alcantara (Brazil) – rocket exploded on launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.
Global location & GPS coordinates of major spaceports & launch sites. ??? - Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

                                                                                                                                                             Global location, GPS coordinates of major spaceports & launch sites. Rocket launch debris fields indicated & Links to space port’s web sites included.  (CLICK ON MAP TO ENLARGE)   Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why 4.) which has the least advantage & why?

Location, Location, Location Benefits Rocket Launch Sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being threaten by a rocket launch, which could experience a catastrophic failure is why oceans are used as a safety barrier. Legal liability from a launch vehicle is a reason why all ships and aircraft are restricted from being anywhere near a rockets flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.
Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum.  An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?

Surprise space mission featured videos: Click → http://www.youtube.com/watch?v=rfVfRWv7igg →    Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law And Related Issues.

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063 

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exist today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

 WA Okang SatDshBP_e1103
For the Archives

chronicles of the everyday

OOAworld

Travel, Art, Stories, Photos, Stories, Film, Videos, Animation, Drawings, Writing

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Daring to Live in Love!

The Alternate Economy

WordPress.com News

The latest news on WordPress.com and the WordPress community.

Eric David Warren

Telling stories through words and images.