Tag Archives: Sputnik satellite

Is Space Law Really That Far Over Your Head?

29 May
Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  
 Part 1 of 2 Editions – To see an alternative graphic view of this story see: Space Law | bigpictureone                                                                 
Students and instructors are encouraged to use the visual cues imbedded within the text to quickly locate key information.
Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it has had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens. 
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing overtime through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new, dimensions as needed.
There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.
Back To Rocket Science Basics.
The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins attached near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. A German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass production. Used by the German military towards the end of World War II, the V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.   http://www.v2rocket.com/start/makeup/design.html
The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 83 to 93 km (52 to 60 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.
— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.
First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.

First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army

American scientists, James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army

Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

What Goes Up, Must Come Down.
Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.
Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Because so many languages are involved with these international agreements, terms used in Space Law often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.
Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.

Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.

Cuba Gives A New Meaning To A Cash Cow.
Case Study:  In November of 1960, the second stage of a U.S. Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Dramatic Rocket Launch Failures Associated With Space Exploration.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rush reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957. WA Okang SatDshBP_e1103
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath.    Disaster at Xichang | History of Flight | Air & Space Magazine
Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and spaceports are geographically chosen to mitigate rocket launch accidents .   US rocket disasters – YouTube
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.
VLS-3 rocket, launch  – August 2003, Alcantara (Brazil) – rocket exploded on launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.
Global location & GPS coordinates of major spaceports & launch sites. ??? - Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

                                                                                                                                                             Global location, GPS coordinates of major spaceports & launch sites. Rocket launch debris fields indicated & Links to space port’s web sites included.  (CLICK ON MAP TO ENLARGE)   Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why 4.) which has the least advantage & why?

Location, Location, Location Benefits Rocket Launch Sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being threaten by a rocket launch, which could experience a catastrophic failure is why oceans are used as a safety barrier. Legal liability from a launch vehicle is a reason why all ships and aircraft are restricted from being anywhere near a rockets flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.
Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum.  An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?

Surprise space mission featured videos: Click → http://www.youtube.com/watch?v=rfVfRWv7igg →    Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law And Related Issues.

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063 

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exist today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

 WA Okang SatDshBP_e1103
Advertisements

The World Event Which launched Seattle into a Postmodern Orbit, 50 Years Ago Today.

22 Apr

Seattle panorama with Space Needle in foreground and Mt Rainier in background.

Multimedia eLearning essay by: David Johanson Vasquez © All Rights – Third Edition    

Content includes: Blended learning, critical think, Seattle Postmodern History, (Video Links – MGM film segments with Elvis Presley at Seattle’s World Fair, postmodern video of early NASA rocket launches & spacewalks, video defining “postmodernism”)  (Web links, history org feature of Century 21 Seattle’s World’s Fair & Architect Japanese American Minoru Yamasaki)

Century 21 World’s Fair logo.

On this day, April 21st, 1962, Seattle’s Century 21 World’s Fair opened the doors for its national and international visitors.  Eventually, almost 10 million guests would attend the entire event to—imagine a futuristic tomorrow, which promised technological wonders for improved living and for promoting world harmony.

In the previous century’s, 1851 London World’s Fair, taking place at the Crystal Palace, it was a first of its kind event . The industrial age was in a mature stage of  development, offering new forms of emerging technologies.  In this era, people became aware of time speeding-up, caused by steam-powered’s ability to hasten the speed of long-distance travel with locomotives and steamships.  The dimensions of  time and space were being reduced by these transportation developments… which brought distant nations and cultures together, allowing for— the creation of World’s fairs for promoting industrial development and international exhibits.  Seattle’s first World’s fair, the  Alaska Yukon Pacific Exposition, in 1909, took place near the peak of the modern industrial age.

The Space Needle, an iconic landmark from Seattle’s 1962 Century 21 Worlds Fair.

Significantly, the Century 21 World’s Fair was successful with a number of tangible results— it was one of the few world’s fairs, which made a profit and most importantly, it lifted Seattle out of its perceived provincial setting, while placing it on a world stage.  The timing was ideal for the city’s economic and development trajectory.  With Boeing Aerospace as a prime Seattle-based company, it benefited from the international exposure, right when the postmodern world began embracing jet travel for enhanced global access.

Aerial view of Seattle Center, part of the original site: Century 21 World’s Fair.

Optimism and enthusiasm associated with the 1962 Worlds Fair was authentic, however, in the big picture, a dark shadow was growing in super-power tension as the cold war thermometer was reaching a boiling point.  President Kennedy’s excuse of having a cold for not attending the Century 21 closing ceremony in October was a ruse, actually his efforts for de-escalating the Cuban Missile Crisis were urgently required.  As a result of averting a nuclear war over Cuba, President Kennedy successfully presided over the United States, United Kingdom and Soviet Union’s signing the Comprehensive Nuclear Test Ban Treaty (CTBT) in the following year of 1963.

Ironically, it was the Soviet Union, which created the theme of “science” for Seattle’s Century 21 Worlds Fair.  On October 4, 1957 the Russians launched Sputnik, the first orbiting satellite, which gave them an edge in space development.  With the Soviet’s apparent satellite success, Americans feared they were falling behind in science and technology; as a result, the theme of “science” became the framework for Seattle’s Worlds Fair.  From this time forward, the U.S. set goals to be leaders in space exploration and development.

The shock-wave effect created by Sputnik, awoke America from its idealistic  complacency of the 1950’s.  Now a sense of urgency was created in looking for optimism within future technology of tomorrow.  This quest for all things technological— was the fuel which Seattle used for launching its World’s Fair.  Late in 1957, the title: Seattle Century 21 World’s Fair was selected as the brand name—to help promote America’s vision of optimism for a technological future.  To champion this cause, Albert Rossellini, Washington State Governor from 1956 to 1965— selected an exceptional group of business and civic leaders for a commission, which successfully acquired  financing for the World’s Fair.

Governor Albert Rossellini on Veteran’s Day 1961.

Governor Rossellini, a Pacific Northwest civic titan, had a vision, which helped develop the region into a world-class economic dynamo.  The World’s Fair, along with a modern transportation infrastructure, and post secondary education developments are just a few examples of the legacy Rossellini created.  One more fascinating contribution from Governor Rossellini was his success at bringing the of “King of Rock and Roll” to Seattle’s World Fair.

Albert Rossellini  pitched the idea to MGM, for making a movie with Elvis Presley (click on the video link →)  It Happened at the World’s Fair — (Movie Clip) Happy Ending  Enlisting Elvis, a mega superstar, to help promote the Fair in a movie was a brilliant marketing move, with true creative vision!

Most impressive icons of the Century 21 Fair are the Space Needle and Monorail, both went on to become revered Seattle landmarks and preferred  tourist attractions. Internationally, the Space Needle is more recognizable as a reference to Seattle, than the city’s actual spoken name.

The ever-popular Seattle Monorail glides into view.

Low angle view of a futuristic Space Needle.

The Inspiration for the “Space Tower” as it was initially called, came from a napkin sketch by C21 chairman, Eddie Carlson.  The chairman was motivated by his visit to a 400’ TV tower, complete with an observation deck and restaurant in Stuttgart, Germany.  The idea of a tower with a “flying-saucer” shaped restaurant at the top, was presented to architect John Graham, who added the concept of a rotating restaurant to allow viewers a continuous change of panoramic views.  Victor Steinbrueck, professor of architecture at the University of Washington and architect John Ridley produced concept sketches which featured an elegant tripod, crowned with a saucer structure, observation deck.

Minoru Yamasaki, a first-generation, Japanese American, born in Seattle, was the lead architect— along with Seattle’s NBBJ Architects chosen for designing the U.S. Science Pavilion, today’s Pacific Science Center.

Originally titled the U.S. Science Center, now the Pacific Science Center, was designed by architect Minoru Yamasaki, using his “Gothic Modernism” style.

Yamasaki’s innovative, graceful style was also used in Seattle’s most daring piece of architecture, the Rainier Tower— supported by a gravity defying inverted pedestal!

Yamasaki’s dynamic Rainier Tower architectural design in Seattle.

Another of Minoru’s Emerald City designs is the IBM Building, used as a model for the New York City twin tower design (destroyed in the 9/11, 2001 terrorist attacks.)

Seattle IBM Building designed by Minoru Yamasaki, was used as the model for NYC WTC Twin Towers. An example of Yamasaki’s “gothic modernism” style.

The Pacific Science and NYC twin towers architectural style is gothic modernism, which is a signature feature found in most of Minoru’s designs (please see examples of gothic modernism elements in the photographs below.)

Yamasaki’s iconic Twin Towers, Once part of NYC World Trade Center.

NYC Twin Towers designed by Minoru Yamasaki.

The futuristic Century 21 Monorail, gracefully gliding above the busy streets of Seattle. One of the City’s most popular tourist attractions.

During the summer of the World’s Fair opening,  my parents took me to experience the exposition. Although I was very young while attending, the images and feelings of wonder from seeing the futuristic architecture and exhibits are still with me.  The theme of life in the 21st century, awoke my imagination and interest in science technology at an early age, which still continues to this day. ~

Twilight view of Seattle Space Needle and Pacific Science Center.

A must see postmodern era video featuring the beginnings of the space race. Click on link below. ↓

http://www.youtube.com/watch?v=rfVfRWv7igg

What is postmodernism video (click on video link below ↓)

http://www.youtube.com/watch?v=oL8MhYq9owo

HistoryLink to Century 21 — The 1962 Seattle World’s Fair, Part 1 ( Click on link below ↓)

http://www.historylink.org/index.cfm?DisplayPage=output.cfm&File_Id=2290

Links to Seattle Architect Minoru Yamasaki ↓

http://en.wikipedia.org/wiki/Minoru_Yamasaki

http://www.time.com/time/covers/0,16641,19630118,00.html 

What can be more important than reaching for excellence in education, still not sure? Read what one of the greatest storytellers of our time is saying about the importance of education. Iconic filmmaker, George Lucas is true to his word regarding support for education. Please read what he wrote this week in his Eductopia.org. Site, regarding the importance of teaching. My written response to Mr. Lucas’s article is how I use web-based multimedia experiences to share passion for learning. I wonder if GL took a look at what I had to say?

http://www.edutopia.org/blog/importance-of-education-george-lucas

http://www.edutopia.org/blog/importance-of-education-george-lucas

www.edutopia.org

[contact-form] [contact-field label='Name' type='name' required='true'/] [contact-field label='Email' type='email' required='true'/] [contact-field label='Website' type='url'/] [contact-field label='Comment' class="GINGER_SOFATWARE_noSuggestion GINGER_SOFATWARE_correct">textarea</span>" required='true'/] [/contact-form]

For the Archives

chronicles of the everyday

OOAworld

Movie, Photos, Writing, Stories, Videos, Animation, Drawings, Art and Travel

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Via Lucis Photography

Photography of Religious Architecture

Daring to Live in Love!

The Alternate Economy

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Eric Warren

Telling stories through words and images.

%d bloggers like this: