Tag Archives: multimedia essay

A Full Throttle Multimedia Video of Seattle From the R22 Beta II helicopter – Part 1 of 2.

16 Oct
Multimedia essay by: David Johanson Vasquez  © All Rights 

The Robinson R22 helicopter is often described as a sports car version of helicopters — ultra light in weight, it takes off quickly and is so responsive it will literally make your head spin. Weighing in at only 1200 pounds fully fueled, it often feels like you’re wearing the helicopter like a “jet-pack” rather than riding in it. As a thrilling life experience, helicopter flights are at the top of the list, however, it requires the highest level of professionalism to safely fly and be involved with helicopter operations.

Videos by: David Johanson © All Rights

http://www.youtube.com/watch?v=JMVD3-P0fdM&feature=player_detailpage

 As a multimedia specialist who produces stories supported by photography and video content, I’ve used a variety of helicopters for an image capture platform. Everything from the compact , high – performance Huey 500D up to the  large tandem rotor  Kawasaki KV 107 (a licensed version of  the Boeing Vertol BV107 “Chinook” helicopter.) It’s the R22’s light weight, which  in my opinion, gives you the most thrill for getting from point A to point B.          

.

The Robinson R22 Beta II Helicopter was arranged for me to use as part of ◊ a six-month photography contract with the Port of Seattle. In between locations photographed for the Port, I shot video content for multimedia educational applications.

Multimedia Enhancements For Greater Learning 

This multimedia video includes graphic overlays, lower third titles and an integrated color key, which indicate: ΘSeattle historic architecture (Smith Tower)↔ municipal, transportation and industry infrastructure along with the  R22’s performance ratingsThe style of writing for this multimedia essay structures information using bold and italicized text  to optimize key content for quick scanning by readers. For accessing your recall and comprehension a quiz is included at the end of this essay. You’re also invited to explore provided web links related to the essay’s content  for learning more about subjects of interest. Your opinions and insights on how to enrich this multimedia experience is valued, so a comment section is included for suggestions and feedback.                                 

Advantages & Challenges For Image Capture from Helicopters     

The advantages of using a helicopter over an urban setting are many including: multiple low angle views, which are unavailable when using fixed winged aircraft, hovering over specific areas, an efficiency in reaching desired altitudes for a variety of perspective views.  

Ξ Aerial photography and especially video are challenging to produce in a helicopter compared with using fixed winged aircraft.  Two major issues, which can hamper imaging are: ↑ vibrations and noise caused from the engine next to the cab and rotor vibrations caused from elastic torsion deformations while flying. Aerospace companies such as Boeing and big budget feature film projects will occasionally use high-end aerial photography  companies, which have specialized cameras mounted into their aircraft. This specialization can reduce some aerial photography vibration issues associated with hand-held cameras, but it requires a large budget to justify the expense. The R22 helicopter is a very light craft and the summer afternoon, which was used to shoot these aerials, had strong turbulence, so some scenes will have some unavoidable vibration and noise in them. 

This is the first of two videos, which features aerial views of Seattle provided by  Helicopters Northwest out of Θ Boeing Field. The second video, soon to be posted, shows the return for refueling and includes initial mechanical issues getting the helicopter back in the air.  In regards to refueling, it’s critical a helicopter has been properly grounded before operations begin. Helicopter rotor blades are capable of generating large amounts of static electricity —especially in dry, dusty environments, which can pose a serious threat to both flight and ground crews.                

Outcomes From Infrequent Helicopter Accidents Are Usually Tragic… But There Are Exceptions

One of my first jobs after graduating from college was with KREM-TV (King Broadcasting) in Spokane. A few years after I moved on from working with the station a tragic accident occurred with its news helicopter. The helicopter had just picked up Gary Brown —an outstanding KREM videographer (who I remembered as always being upbeat, positive and friendly) — when its rotor blades struck the guy wires supporting the station’s transmitter tower. Both the photographer and pilot were killed instantly.

I’ve included a link below, which has an article with a photo of the accident scene from the Spokane, Spokesman Review – May 7, 1985 edition. The story has comments from a Federal Aviation Administration (FAA ) official coordinating the accident’s investigation. Ironically at the same page is a syndicated, New York Times story of a larger helicopter accident, which occurred on the following day of May 6. That tragedy was of the loss of 17 Marines in a large Sikorsky, CH-53 Sea Stallion off the southwestern coast of Japan. A joint operations helicopter reported witnessing the CH-53 suddenly lost power and dropped 500 feet into the sea. 

About ten years ago a friend of mine survived a helicopter crash, with only a few scratches. He had bought a used helicopter from a sheriff’s department to State his own flight service business. Over time, parts needed to be replaced with upgrades and he was sold a defective fuel-line, which was installed and failed while in flight. He was approximately 100 feet in the air with two clients when the helicopter’s engine shuttered to a stop. Fortunately he got his helicopter into ↑ auto rotation (emergency helicopter procedure, which shifts rotor blade’s pitch to use stored kinetic energy for making a “soft landing”) and as they began descending, the helicopter’s skid caught the center of a tree and its branches helped them slow the descent even more. 

Education and Training Is the Key to Helicopter Safety

Overall, if you consider how many hours and flights in a day helicopters perform flawlesslythey are safe and reliable. What these specialized aircraft can achieve in vertical maneuverability and performance is nothing short of marvelous and amazing. To ensure engines and structural frames are safely maintained the FAA certifies aviation mechanics using  two certifications. Helicopter mechanics are required to have: an airframe mechanic and or a power plant mechanic certification. Most employers prefer their mechanics having both certifications, which requires 1,900 hours of coursework in order to pass oral and written exams that prove their skills.           

Both videos demonstrate the essential level of professionalism required for helicopter operations during a high volume of jet and helicopters landings and takeoffs at Boeing Field.

Now, just sit back and enjoy the ride!       

     

 

.

.

QUESTIONS FOR CONTINUOUS LEARNING AND TO TEST YOUR RECALL?

1.) What are the advantages and disadvantages of using a helicopter for aerial photography?

2.) Name one of the first skyscrapers, which also was the tallest building on the West Coast until 1962?

3.) What is the most important overall requirement for flying helicopters?

4.) What is the name of the emergency procedure for when a helicopter’s engine fails inflight and what process takes place for a soft landing?

5.) Name the FAA requirements for being a helicopter mechanic and why are they necessary?

6.) Describe the multimedia enhancements on the video, which were used to promote greater learning.

Integrated Learning Color/Symbol Key for Career Technical Education:

Navy BlueAerospace Engineering related including: aerodynamics, structural dynamics & avionics

Ξ Dark Green — Multimedia & graphic design techniques used for Integrated learning

Θ Maroon — Historical structures, locations and or districts

◊ Indigo – Professional photography & video production

 Purple — Civil engineering related

 

REFERENCES: (Click on these sites to learn more on the subject)

The Kopp-Etchells Effect: Eerie Halo of a Helicopter’s Rotor Blades in a Dust Cloud – Neatorama

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0282087

The Spokesman-Review – Google News Archive Search

Robinson Helicopter Co.

Helicopters Northwest – Boeing Field

Intersting facts about the historic Smith Tower

HistoryLink.org- the Free Online Encyclopedia of Washington State History

Smith Tower – Wikipedia, the free encyclopedia

Walking Tours (Self-Guided) – Visiting Seattle – Seattle.gov

http://www.soundtransit.org/Documents/pdf/about/Chronology.pdf

Downtown (Central Business District) guide, moving to Seattle | StreetAdvisor

Columbia Helicopters

CH-47JA Helicopter | Helicopters | Kawasaki Heavy Industries, Ltd. Aerospace Company

Boeing CH-47 Chinook

Boeing: History — Products – Boeing CH-47 Chinook Rotorcraft

MD Helicopters MD 500 – Wikipedia, the free encyclopedia

Boeing: History — Products – Hughes OH-6 Cayuse/500 Military and Civilian Helicopter

Helicopter Safety | Flight Safety Foundation

http://drum.lib.umd.edu/bitstream/1903/1900/1/umi-umd-1880.pdf

King County International Airport/Boeing Field

Port of Seattle

 

 

  [contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Advertisements

Who Were the Titans of Telecommunication and Information Technology?

31 Aug

Multimedia Essay By: David Johanson Vasquez © All Rights – Second Addition – Series 1 & 2

— Inventions are rarely the result of just one individual’s work— but are created through collective efforts overtime,  from several individual’s observations, theories and experiments. Benjamin Franklin’s role in demystifying electricity, Michael Faraday’s discovery of “induced” current, Nikola Tesla and Guglielmo Marconi’s wireless radio communication… are just a few of the technology pioneers responsible for developing modern telecommunications. I regret not having the resources  for this essay’s inclusion of all men and women, whose’ discoveries made telecommunication and information technology possible.    

Definition of technology — “the systematic application of scientific or other organized knowledge to practical tasks.”  (J.K Galbraith)  “the application of scientific and other organized knowledge to practical tasks by… ordered systems that involve people and machines.” (John Naughton)

For an alternative graphic format on this program, please visit:  http://www.BigPictureOne.wordpress.com

Telecommunications took its first infant steps as the industrial revolution was rapidly compressing concepts of time and space. The first half of the 19Th Century witnessed modern societies using steam locomotive trains for mass transit and electronic communication through telegraph technology. Steamships shrunk the world by delivering capital goods, raw resources and people to remote locations within fractions of the time it took before. With the industrial revolution nearing its peak at the close of the century, a new communication, innovation was developed, which helped transform the modern age into a postmodern era. 

Inventor, Alexander Graham Bell’s Washington D.C. company, which developed the telephone, eventually evolved into a prime research laboratory. His vision for a R&D lab, created a foundation for the digital technologies of today. In the following century, another key, R&D technology titan— Xerox PARC  enters the stage, which helps to set in motion personal computing and expand the information technology revolution.

The steamship S.S. Empress of India near Vancouver B.C.
From the private collection of: David A. Johanson ©

Scottish born Alexander Graham Bell
from the collection of: Library of Congress

The French Technology Connection

A French, visionary government in 1880, recognized the importance of Alexander Bell’s invention, and awarded him the Volta Prize. A sum of 50,000 francs or roughly, $250,000 in today’s currency came with the honor. The funds were reinvested into research for use in education to enable knowledge on deafness. Growing investments to fund the creation of Bell Telephone Company on March 20, 1880 allowed for expanded research on recording and transmission of sound.

Can You Hear Me Now     telep_road_BPP_et110

The telegraph and telephone were the first forms of electricity, point-to-point telecommunications and qualify as early versions of social media platforms. Over time, phone service, convenience  and quality have steadily improved.  

In my youth during the early 1960s, I spent summers visiting relatives with farms in Wisconsin who had phones connected on “party lines” (several phone subscribers on one circuit).  When picking up a phone connected with a party line, your neighbor might be having a conversation in progress. If  a conversation was taking place  you could politely interrupt and request to use the phone for urgent business. Today, phone service has become so advanced that it is taken for granted as a form of personal utility. 

In 1925, Bell Telephone Laboratories were created from the merger of the engineering department of American Telephone & Telegraph (AT&T) and Western Electric Research Laboratories.  Ownership of the labs was shared evenly between the two companies; in return, Bell Laboratories provided design and technical support for Western Electric’s telephone infrastructure used by the Bell System. Bell Labs completed the symbiotic relationship for the phone companies by writing and maintaining a full-spectrum of technical manuals known as Bell System Practices (BSP).     

 

An Invisible Bridge From Point A To Point B

Bell Laboratories instantly began developing and demonstrating for the first time, telecommunication technology, which we now depend on for economic growth and to hold our social fabric together. Bell accomplished the first transmitting of a long-distance, 128-line television images from New York to Washington, D.C. in 1927. This remarkable event ushered in television broadcast, creating a new form of mass-multimedia. Now people could gather together in the comfort of their homes and witness… live news reports, hours of entertainment and product advertisements, which helped to stimulate consumer spending in a growing economy. Radio astronomy’s powerful space exploratory telescope, was developed through research conducted by Karl Jansky in 1931. During this decade, Bell lab’s George Paget Thomson was awarded the Nobel Prize in physics for his discovery of electron diffraction, which was a key factor for solid-state.

The Forecasting Power Of Numerical Data

An important component of renewable energy is the photovoltaic cell, which was developed in the lab during the 1940s by Russell Ohl. A majority of the United States’ statistician superstars, such as W. Edwards Deming, Harold F. Dodge, George Edwards, Paul Olmstead and Mary N. Torrey all came from Bell Labs Quality Assurance Department. W. Edwards Deming’s genius would later  go on to help revitalize Japan’s industry and be used in Ford Motors’ successful, quality control initiatives in the 1980s.

W. Edwards Deming

The U.S. government used Bell Labs for a series of consulting projects relating to highly technical initiatives and for the Apollo program. Several Nobel Prizes have been awarded to researches at the laboratory, adding to its fame and growing prestige. In the 1940’s many of the  Bell Labs were moved from New York City to nearby areas of New Jersey. ……………………………….Replica of the first transistor

Inventors of the transistor, l. to r. Dr. William Shockley, Dr. John Bardeen, Dr. Walter Brattain, ca. 1956
Courtesy Bell Laboratories

Smaller Is Better In The World Of Electronics

Perhaps Bell Laboratories most marvelous invention was the transistor invented on December 16, 1947. Transistors are at the heart of just about all electrical devices you’ll use today. These crucial artifacts transformed the electronics industry, by miniaturizing multiple electronic components used in an ever-expanding array of products and technical applications. Transistor efficiencies also greatly reduced the amount of heat in electronic devices, while improving overall reliability compared to fragile vacuum tube components. Once more, the labs’ select team of scientists was rewarded  with the Nobel Prize in Physics, for essential components of telecommunications.  

The mobile-phone was also created in 1947, with the labs’ commercial launch of Mobile Telephone Service (MTS) for use in automobiles. Some 20 years later, cell phone technology was developed at Bell and went on to become the ubiquitous form of communication it is today.                                                                                                            

 In 1954 the labs began to harness the sun’s potential, by creating the world’s first modern solar cell. The laser (Light Amplification by Stimulated Emission of Radiation) was dated in a 1958 Bell Lab, publication. The laser’s  growing spectrum of applications includes —  communications, medicine and consumer electronics.

A Perpetual Revolution In The Sky Unites The World

In 1962, Bell Labs pioneered satellite communications with the launch of  Telstar 1, the world’s first orbiting communication satellite. Telstar enabled virtually instant telephone calls to be bounced from coast to coast and all over the world. This development unified global communications and provided instant 24 – hour news coverage.      Bell Labs introduced the replacement of rotary dialing with touch-tone in 1963, this improvement vastly expanded telephone services with — 911 emergency response, voice mail and call service capabilities.

The image used in Byte Magazine for an article on VM2 assembly language. Photo-illustration by: David A. Johanson © All Rights

A New Distinct Language For Harnessing Machines

It’s been greatly underreported that Unix operating system, C  and C++ programing languages, essential for use in Information Technology (IT), were all created within Bell Labs. These crucial computer developments were established between 1969 -1972, while C++ came later in the early 1980s. C programing was a breakthrough as a streamlined and flexible form of computer coding, making it one of the most widely used in today’s programing languages. Unix enabled comprehensive networking of diverse computing systems, providing for the internet’s dynamic foundation. Increasingly, Bell Laboratories inventions were transforming and expanding the frontiers of micro-computing, which helped to make personal computing possible.                                                                         In 1980, Bell Labs tested the first single-chip 32-bit microprocessor, enabling personal computers to handle complex multimedia applications.

A major corporate restructure of AT&T, the parent company of Bell Laboratories, was ordered  by the U.S.  Federal government in 1985, to split-up its subsidiaries as part of a  divestiture agreementThis event proved to be an example of over regulation, which severed important links for funding technology R&D projects. Although AT&T previously had an economic advantage with a monopoly in the telephone industry, it allowed for necessary funding of Bell R&D labs.  Indirectly, U.S. tax payers made one of the best investments by subsidizing the foundation for our current telecommunication and information technology infrastructure.

AT&T Bell Laboratories became AT&T Labs official new name in 1996, when it  became part of Lucent Technologies. Since 1996, AT&T Labs have been awarded over 2000 patents and has introduced hundreds of new products. In 2007, Lucent Bell and  Alcatel Research merged into one organization under the name Bell Laboratories. Currently, the Labs’ purpose is directed away from scientific discovery and focussed on enhancing existing  technology, which is intended to yield higher financial returns.

.

Pause & Reflect: Questions for continuous learning part 1.

1.) What were the first forms of electrical, point-to-point telecommunications?

2.) What revolution was taking place when early forms of telecommunications were invented and name at least two technology innovations?

3.) Define the word technology?

5.) Who founded Bell Research and Development Labs?

7.) Name at least two developments which Bell Labs were awarded Nobel Prizes in?

6.) Pick one Bell Lab invention, which you believe was most important for helping develop modern telecommunications or personal computing.

Any Sufficiently Advanced Technology Will Appear As Magic.                                                     — Arthur C. Clarke

.

Advance Technology Takes Root In The West

In the first half of the 20TH Century, Bell Labs’ dazzling R&D creations aligned seamlessly to establish a solid foundation for telecommunications. Most of the Labs’ bold research had been conducted in the industrialized, Eastern portion of the United States. By the 1950s, new developments and evolving industries on the West Coast were benefiting from Bell’s technological inventions. Palo Alto’s, Stanford University research facilities, south of San Francisco, acted as a magnet for pulling in corporate transplants— most notably  IBM, General Electric and Eastman Kodak. In 1970, XEROX Corporation of Rochester, New York established a research center known as—Xerox PARC (Palo Alto Research Center Incorporated). PARC’s impact in R&D would soon be felt,  acting as a stimulating catalyst for personal computing and information technology development.  

 Creative Sanctuary For Nurturing Bold Ideas

Jack GoldmanChief Scientist at Xerox enlisted physicist Dr. George Pake, a specialist in nuclear magnetic resonance to help establish a new Xerox research center. Selecting the Palo Alto location gave the scientist greater independence and freedom than was possible near its Rochester headquarters. The location also provided huge resource opportunities for selecting talent pools of leading engineers and scientist from the numerous research centers located in the Bay Area. Once the West-Coast lab had a foothold, it became a sanctuary for the company’s creative misfitspassionate science engineers who were determined to create boldly. One of the few downsides for the new facility’s location was—less opportunities for lobbying and promoting critical breakthrough developments to top management located a continent away.

XEROX PARC had an inspiring creative influence, along with universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds.

Premier Unveils The Future Of Personal Computing Tools

XEROX PARC, discovered a target rich environment of ideas from  Douglas Engelbart, who worked at Stanford Research Institute (SRI) in Menlo Park. Engelbart gave the Mother of  all personal computing presentations in December of 1968, — astonishing the computer science audience with a remarkable debut of: the computer mouse, hyper text, email, video conferencing and much more.

Bitmap graphic, graphical user interface (GUI), which provides window like graphic features and icon objects — are just a few of the revolutionary concepts developed at PARC for personal computing. The list of  PC  innovations and developments continues with laser printers, WYSIWYG text editor, InterPress (prototype of Postscript) and Ethernet as a local-area computer network — inspiring PARC Universal Packet architecture, which resembles today’s internet. Optical disc technologies and  the LCD, were developed by PARC material scientist adding yet more to its diverse technology portfolio.  


The Shape Of Things To Come

 Xerox PARC’s R&D, efficiently blended these vital new technologies and leveraged it all into a personal computer, workstation, called  “Alto.” The futuristic Alto, was light-years ahead of its 1973 debut—bundled with a dynamic utility including: a mouse, graphical user interface and the connectivity of Ethernet. Interest in this revolutionary PC wonder kept expanding as countless demonstrations were given to the legions of intrigue individuals. The increasing demand for witnessing the power of PC computing was telegraphing the need for a new consumer market. For the first time, a “desktop sized computer” could match the capabilities of a full-service print shop.

Advance technology always comes with a hefty price tag, and the Alto was no exception, making it beyond reach of most consumers. Despite a high price-point — prestige and enthusiasm for Alto grew — as did admiration for the bold new world of Apple Computers and of its superstar founder — Steve Jobs.

Xerox Alto -1973 Was this the apple in Steve Job’s eye? It certainly was the first personal computer, which included most of the graphic interface features we recognize today.

Torch Of The Titans Lights New Horizons

By 1979, Apple was beginning to advance its own user-friendly interfaces with the development of the Lisa and Macintosh personal computers. Both products featured screens with multiple fonts, using bitmap screens for blending graphics and text. There were Apple graphics engineers  associated with Xerox PARC — either through former employment or in connection with Stanford University. Apple engineers aware of advances made in graphic interfaces with PARC’s ALTO, prompted Steve Jobs to have a parlay with PARC. In late 1979, Steve Jobs with his Apple engineering entourage arrived to view an AlTO demonstration at Xerox’s facilities. The  meeting’s outcome proved Jobs’ was a master of showmanship and marketing JudeJitsu by not disclosing a previously negotiated, sizable investment from Xerox’s venture capital group

Gravitational forces began shifting in favor of Steve Jobs and Apple Computer to capitalize on the market potential for personal computing. PARC computer engineers and scientist clearly understood the economic potential of an information business they help  build… but Xerox top executives certainly did not.  Xerox had a history of dominating the lucrative copy machine market — it was the business model corporate decision makers were comfortable with and they would not risk venturing very far from.  Most of PARC’s personal computing developments experienced the same frustrating fate of withering on the vine —  allowing for lucrative opportunities to go for bargain rates to new companies like Apple Computers.

Apple’s alchemy of — perfect timing, creative talent and visionary insight quickly aligned towards harnessing information technology products for an emerging market convergence. The creative inspiration and marketing savvy, which Steve Jobs’ applied towards personal computing—created  seismic ripple effects, which we’re still experiencing today.

Nothing Ventured, Nothing Gained  

Recently, there’s been a handful of media and tech industry critics, siting undeserved shortcomings of Bell Labs and Xerox PARC.  Too often, corporate R&D labs are faulted for not fully marketing their technology developments or capitalizing on scientific inventions. Rarely mentioned is the research & development lab’s purpose or mission of innovation, which is directed by the parent company’s strategic goals. Failing to understand the reality of this relationship, detracts from the technological importance and diminishes the accomplishments of these remarkable engineers and scientists. Lost in the critics hindsight, is the titanic obstacles facing the marketing, manufacturing and distribution of innovative products.  

Thrilling technical breakthroughs are what grab headlines — rarely are the successful efforts of corporate marketing or brilliant production logistics recognized or mentioned. It’s a disconnect to judge a R&D’ lab’s success completely  on the financial returns of its inventions.

The laser printer’s success, in particular, should erase the myth that Xerox PARC miss-managed all of its developments. Gary Starkweather, a brilliant optical engineer for Xerox PARC, developed the laser printer. Starkweather had pitched battles with Xerox management over promoting the laser printer, but eventually he triumphed and the laser printer went on to earn billions of dollars — enough to repay the investment cost of Xerox PARC several times over. Eventually Starkweather sensibly moved on to greater opportunities when Steve Jobs offered him a job in Cupertino. 

Brilliant R&D technology, requires an equally creative or open-minded group of executives for  converting technology innovation into a marketable product.  These decision makers must maintain iron-wills and courage to shepherd the technology product through its entire volatile development process. IBM’s iconic 305 RAMAC, the first commercial ‘super computer,’  is a classic example of a product development challenge. Introduced in 1956, the RAMAC featured a hard disk drive (HDD) and stored a — whopping five megabytes of data. Apparently, the HDD storage capacity could’ve been expanded well beyond the 5MB, but was not attempted because — IBM’s marketing department didn’t believe they could sell a computer with more storage.                    

IBM 305 RAMAC — first commercial computer to use a hard disk drive in 1956.

R&D Labs take creative risk in developing new ideas, most of these developments won’t make it to market, but that’s the price of creativity. Using intuition for taking risks and knowing some failure is necessary to pave the road toward successful discoveries — builds confidence in trusting one’s creative resources. So often, the creative-process is misunderstood and undervalued in our society’s perceived need for instant control and results. In the past, I’ve personally witnessed this attitude reflected in our educational system, however the viewpoint is  progressively shifting to realize the value of the creative-process.

Steve Jobs and Apple Computers are a good illustration of a company, which traditionally emphasized and embraced the creative spirit. Creative employees are considered the most valued resource at Apple as they are encouraged to nurture their creative uniqueness. Shortsighted emphasis on quarterly results, which has affected most of American business culture, is refreshingly absent from Apple’s overall mindset, allowing for more sustained and successful business initiatives.

Where Have All The R&D Labs Gone — Innovation VS Invention

The era of industrial, ‘closed inventive’ research & development labs — have faded into the background of yesterday’s business culture. Internal silos, once the proprietary norm, have been day-lighted to allow fresh ideas and collaborative efforts to circulate.  For the past 10 years, corporations have steadily reversed their long-term, pure scientific research in favor of  efforts towards quicker commercial returns. In 2011, Intel Corporation, dropped its  ’boutique’ research lablets‘ in Seattle, Berkeley and Pittsburgh  — opting for academic research to be conducted at university facilities. Intel continues to maintain its more profit oriented Intel Labs. This industry strategy repeatedly cloned itself within the corporate research world, as it is far easier to realize a profit from innovation than it is from pure invention.

Perhaps the golden-age of great research & development labs have run their course — but not before replacing the analogue, industrial era technology, with a digital one. A century ago, using creative, innovative and bold scientific vision, Bell Labs set the standard for future R&D labs. Xerox PARC, helped to extend Bell Labs’ marvelous inventions and innovations with a solid platform of creative research for developing mass markets in the postmodern telecommunications and personal computing of today.  ~

Pause & Reflect: Questions for continuous learning – part 2.

1.) Name the parent company (based in Rochester New York) and its research and development lab, which moved into California’s Bay Area in 1970?

2.) What was the  product (used for duplicating documents), which this New York based company had made its fame and fortune on?

3.) Give at least two reasons why this R&D lab was so inventive?

4.) What stop the lab’s parent company, which developed the first commercialized personal computer from realizing more profits from its inventions?

5.) What was the name of both the young, iconic tech entrepreneur and his company (named after  a red fruit) who was able to creatively use and market early Silicone Valley PC innovations?

6.) What’s the difference between invention and innovation?

7.) In your opinion, who were the top 10 inventors of all time and how did they make your top 10?

.

References

wp- CREATIVE COMMUNITIES v5.indd
Bell Labs – Wikipedia, the free encyclopedia
Bell Labs
Telstar 1: The Little Satellite That Created the Modern World 50 Years Ago | Wired Science | Wired.com
Was Bell Labs Overrated? – Forbes
Top 10 Greatest Inventors in History | Top 10 Lists | TopTenz.net
History of Lucent Technologies Inc. – FundingUniverse
Volatile and Decentralized: The death of Intel Labs and what it means for industrial research
Inventive America | World | Times Crest
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
http://www.westernelectric.com/history/WEandBellSystemBook.pdf
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
HistoryLink.org- the Free Online Encyclopedia of Washington State History
Xerox PARC, Apple, and the Creation of the Mouse : The New Yorker
1956 Hard Disk Drive – Disk Storage Unit for 305 RAMAC Computer
IBM 305 RAMAC: The Grandaddy of Modern Hard Drives
WSJ mangles history to argue government didn’t launch the Internet | Ars Technica
The Industrial Revolution: A Timeline
A History of Silicon Valley
The Tinkerings of Robert Noyce

XEROX PARC had an inspiring creative influence, along with a brilliant universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds

The World Event Which launched Seattle into a Postmodern Orbit, 50 Years Ago Today.

22 Apr

Seattle panorama with Space Needle in foreground and Mt Rainier in background.

Multimedia eLearning essay by: David Johanson Vasquez © All Rights – Third Edition    

Content includes: Blended learning, critical think, Seattle Postmodern History, (Video Links – MGM film segments with Elvis Presley at Seattle’s World Fair, postmodern video of early NASA rocket launches & spacewalks, video defining “postmodernism”)  (Web links, history org feature of Century 21 Seattle’s World’s Fair & Architect Japanese American Minoru Yamasaki)

Century 21 World’s Fair logo.

On this day, April 21st, 1962, Seattle’s Century 21 World’s Fair opened the doors for its national and international visitors.  Eventually, almost 10 million guests would attend the entire event to—imagine a futuristic tomorrow, which promised technological wonders for improved living and for promoting world harmony.

In the previous century’s, 1851 London World’s Fair, taking place at the Crystal Palace, it was a first of its kind event . The industrial age was in a mature stage of  development, offering new forms of emerging technologies.  In this era, people became aware of time speeding-up, caused by steam-powered’s ability to hasten the speed of long-distance travel with locomotives and steamships.  The dimensions of  time and space were being reduced by these transportation developments… which brought distant nations and cultures together, allowing for— the creation of World’s fairs for promoting industrial development and international exhibits.  Seattle’s first World’s fair, the  Alaska Yukon Pacific Exposition, in 1909, took place near the peak of the modern industrial age.

The Space Needle, an iconic landmark from Seattle’s 1962 Century 21 Worlds Fair.

Significantly, the Century 21 World’s Fair was successful with a number of tangible results— it was one of the few world’s fairs, which made a profit and most importantly, it lifted Seattle out of its perceived provincial setting, while placing it on a world stage.  The timing was ideal for the city’s economic and development trajectory.  With Boeing Aerospace as a prime Seattle-based company, it benefited from the international exposure, right when the postmodern world began embracing jet travel for enhanced global access.

Aerial view of Seattle Center, part of the original site: Century 21 World’s Fair.

Optimism and enthusiasm associated with the 1962 Worlds Fair was authentic, however, in the big picture, a dark shadow was growing in super-power tension as the cold war thermometer was reaching a boiling point.  President Kennedy’s excuse of having a cold for not attending the Century 21 closing ceremony in October was a ruse, actually his efforts for de-escalating the Cuban Missile Crisis were urgently required.  As a result of averting a nuclear war over Cuba, President Kennedy successfully presided over the United States, United Kingdom and Soviet Union’s signing the Comprehensive Nuclear Test Ban Treaty (CTBT) in the following year of 1963.

Ironically, it was the Soviet Union, which created the theme of “science” for Seattle’s Century 21 Worlds Fair.  On October 4, 1957 the Russians launched Sputnik, the first orbiting satellite, which gave them an edge in space development.  With the Soviet’s apparent satellite success, Americans feared they were falling behind in science and technology; as a result, the theme of “science” became the framework for Seattle’s Worlds Fair.  From this time forward, the U.S. set goals to be leaders in space exploration and development.

The shock-wave effect created by Sputnik, awoke America from its idealistic  complacency of the 1950’s.  Now a sense of urgency was created in looking for optimism within future technology of tomorrow.  This quest for all things technological— was the fuel which Seattle used for launching its World’s Fair.  Late in 1957, the title: Seattle Century 21 World’s Fair was selected as the brand name—to help promote America’s vision of optimism for a technological future.  To champion this cause, Albert Rossellini, Washington State Governor from 1956 to 1965— selected an exceptional group of business and civic leaders for a commission, which successfully acquired  financing for the World’s Fair.

Governor Albert Rossellini on Veteran’s Day 1961.

Governor Rossellini, a Pacific Northwest civic titan, had a vision, which helped develop the region into a world-class economic dynamo.  The World’s Fair, along with a modern transportation infrastructure, and post secondary education developments are just a few examples of the legacy Rossellini created.  One more fascinating contribution from Governor Rossellini was his success at bringing the of “King of Rock and Roll” to Seattle’s World Fair.

Albert Rossellini  pitched the idea to MGM, for making a movie with Elvis Presley (click on the video link →)  It Happened at the World’s Fair — (Movie Clip) Happy Ending  Enlisting Elvis, a mega superstar, to help promote the Fair in a movie was a brilliant marketing move, with true creative vision!

Most impressive icons of the Century 21 Fair are the Space Needle and Monorail, both went on to become revered Seattle landmarks and preferred  tourist attractions. Internationally, the Space Needle is more recognizable as a reference to Seattle, than the city’s actual spoken name.

The ever-popular Seattle Monorail glides into view.

Low angle view of a futuristic Space Needle.

The Inspiration for the “Space Tower” as it was initially called, came from a napkin sketch by C21 chairman, Eddie Carlson.  The chairman was motivated by his visit to a 400’ TV tower, complete with an observation deck and restaurant in Stuttgart, Germany.  The idea of a tower with a “flying-saucer” shaped restaurant at the top, was presented to architect John Graham, who added the concept of a rotating restaurant to allow viewers a continuous change of panoramic views.  Victor Steinbrueck, professor of architecture at the University of Washington and architect John Ridley produced concept sketches which featured an elegant tripod, crowned with a saucer structure, observation deck.

Minoru Yamasaki, a first-generation, Japanese American, born in Seattle, was the lead architect— along with Seattle’s NBBJ Architects chosen for designing the U.S. Science Pavilion, today’s Pacific Science Center.

Originally titled the U.S. Science Center, now the Pacific Science Center, was designed by architect Minoru Yamasaki, using his “Gothic Modernism” style.

Yamasaki’s innovative, graceful style was also used in Seattle’s most daring piece of architecture, the Rainier Tower— supported by a gravity defying inverted pedestal!

Yamasaki’s dynamic Rainier Tower architectural design in Seattle.

Another of Minoru’s Emerald City designs is the IBM Building, used as a model for the New York City twin tower design (destroyed in the 9/11, 2001 terrorist attacks.)

Seattle IBM Building designed by Minoru Yamasaki, was used as the model for NYC WTC Twin Towers. An example of Yamasaki’s “gothic modernism” style.

The Pacific Science and NYC twin towers architectural style is gothic modernism, which is a signature feature found in most of Minoru’s designs (please see examples of gothic modernism elements in the photographs below.)

Yamasaki’s iconic Twin Towers, Once part of NYC World Trade Center.

NYC Twin Towers designed by Minoru Yamasaki.

The futuristic Century 21 Monorail, gracefully gliding above the busy streets of Seattle. One of the City’s most popular tourist attractions.

During the summer of the World’s Fair opening,  my parents took me to experience the exposition. Although I was very young while attending, the images and feelings of wonder from seeing the futuristic architecture and exhibits are still with me.  The theme of life in the 21st century, awoke my imagination and interest in science technology at an early age, which still continues to this day. ~

Twilight view of Seattle Space Needle and Pacific Science Center.

A must see postmodern era video featuring the beginnings of the space race. Click on link below. ↓

http://www.youtube.com/watch?v=rfVfRWv7igg

What is postmodernism video (click on video link below ↓)

http://www.youtube.com/watch?v=oL8MhYq9owo

HistoryLink to Century 21 — The 1962 Seattle World’s Fair, Part 1 ( Click on link below ↓)

http://www.historylink.org/index.cfm?DisplayPage=output.cfm&File_Id=2290

Links to Seattle Architect Minoru Yamasaki ↓

http://en.wikipedia.org/wiki/Minoru_Yamasaki

http://www.time.com/time/covers/0,16641,19630118,00.html 

What can be more important than reaching for excellence in education, still not sure? Read what one of the greatest storytellers of our time is saying about the importance of education. Iconic filmmaker, George Lucas is true to his word regarding support for education. Please read what he wrote this week in his Eductopia.org. Site, regarding the importance of teaching. My written response to Mr. Lucas’s article is how I use web-based multimedia experiences to share passion for learning. I wonder if GL took a look at what I had to say?

http://www.edutopia.org/blog/importance-of-education-george-lucas

http://www.edutopia.org/blog/importance-of-education-george-lucas

www.edutopia.org

[contact-form] [contact-field label="Name" type="name" required="true"/] [contact-field label="Email" type="email" required="true"/] [contact-field label="Website" type="url"/] [contact-field label="Comment" class="GINGER_SOFATWARE_noSuggestion GINGER_SOFATWARE_correct">textarea</span>" required="true"/] [/contact-form]

For the Archives

chronicles of the everyday

OOAworld

Travel, Art, Stories, Photos, Stories, Film, Videos, Animation, Drawings, Writing

bigpictureone

Using photos, video & words to explore the Big Picture WordPress.com site

Adventures in Kevin's World

Misadventures in cool places

Bucket List Publications

Indulge- Travel, Adventure, & New Experiences

Daring to Live in Love!

The Alternate Economy

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Eric Warren

Telling stories through words and images.

%d bloggers like this: