Will Halloween 2015, Truly Be The Scariest Until 2027?QA x

29 Oct
A photo illustration featuring an arc of potentially hazardous asteroids (PHAs) entering the Earth's orbital path. — Photo illustration: D a v i d J o h a n s on

A photo illustration featuring an arc of potentially hazardous asteroids (PHAs) entering the Earth’s orbital path. — Photo illustration: D a v i d  A  J o h a n s o n

Multimedia eLearning program by: D a v i d A. J o h a n s o n ©

The author is a multimedia photographer, CTE instructor and a former Boeing scientific photographer. For an alternative graphic presentation of this program, please visit: http://BigPictureOne.wordpress.com

Last night I was inspired to take photos of a dramatic moonrise appearing above the Cascade Mountains in the Pacific Northwest. It was an exceptionally clear evening, which enabled the luminous clarity of the moon to reveal its turbulent history.

In fact, the Earth shares some frightening historic parallels with all of its neighboring planets within our solar system. Indeed, of all world’s collateral past and future events, it is the asteroid or comet nemeses which present a potential close encounter of the worst kind!

Ignorance Is Bliss

Since the beginning of time, on a nearly daily basis, these extraterrestrial objects known as an asteroid come perilously close (relative to celestial distance) to our planet Earth. NASA scientists developed a method of categorizing Near Earth Objects (NEO) for tracking the orbital path of asteroids and comets. The space agency’s Near-Earth Object Observation (NEOO) Program, often referred to “Spaceguard” tracks and catalogues celestial objects coming to within 30 million miles (96,560,400 kilometers) of Earth. Ground and space-based telescope resources are used for increased surveillance and tracking of these unwelcome space nomads.

Potentially Hazardous Asteroid (PHAs) is what NASA currently uses for its parameters to gauge an asteroid’s potential impact threat to the Earth. If an asteroid is projected to travel within the moon and Earth’s orbit, it’s considered a potentially Earth-impact threat and depending on its specific trajectory, it is then placed into groups (Athen, Apollo Amor) for enhanced analysis. If a PHA were detected, it should not be assumed that an imminent Earth-collision is about to happen, however, understating or ignoring this catastrophic potential could lead to an early and permanent retirement of most life on Earth.
2015tb145_s
Blinded By The Light of Day

On February 15, 2013 the asteroid 367943 Duende was long-predicted to approach and pass dangerously close to Earth. On that morning, just after sunrise near Chelyabinsk Oblast, Russia a 20 meter sized meteor exploded as it entered the Earth’s atmosphere from a shallow angle. A radiant superbolide meteor blast occurred at an elevation of just under 30 km (18 miles) creating an intense light brighter than the Sun.

The estimated energy released was equivalent to approximately 500 kilotons of TNT, upwards of 30 times the explosive energy of the atomic bomb detonated above Hiroshima. Regional hospitals treated approximately 1,500 people for injuries and at least 7,000 buildings were damaged in half a dozen cities as an indirect result of the meteor’s shock wave.

The Chelyabinsk asteroid literally snuck under the radar as not all 15 meters wide, near-Earth objects are tracked and catalogue. The trajectory of the asteroid aligned so close to the Sun that it was not visible to the instruments responsible for locating such objects.

Within 16 hours after this unexpected event, the forecasted asteroid 367943 Duende perilously flew past Earth by 27,700 km without incident. In the days that followed, there were increased sightings of bright meteors streaking through the night sky. International space agencies and sources concluded that due to the divergent trajectories of the two celestial objects, they could not possibly be related. Consequently, this event illustrates how unprepared the World community currently is for developing essential contingencies to mitigate the range of potential dangers that asteroids present.

 NASA illustration

— NASA illustration

A Sobering Series Of Events

By coincidence, the Chelyabinsk event is cited as the second largest asteroid to impact the Earth’s atmosphere in recorded history. The larger, 1908 Tunguska event was caused from a 50 meter wide asteroid strike, which detonated at a 28,000 foot elevation. In an instant this event leveled approximately 800 square miles of Siberian forest that contained 80 million trees. The subsequent fireball is estimated to have released the energy equivalent of 185 Hiroshima atomic bombs.

The mother of all meteors to have collided with the Earth is the infamous Chicxulub asteroid, which impacted Mexico’s Yucatán Peninsula 65 − 66 million years ago. This mammoth asteroid caused a 10 mile wide crater and was from a 60 km (37.28 mile) fragment associated with the larger 170 km wide parent body. It is estimated the Chicxulub impactor released the equivalent 100 teratons of TNT, which also qualifies as the largest explosion to happen on the planet. This asteroid’s impact is credited with the Cretaceous-Paleogene extinction event, causing the worldwide extinction of most dinosaurs.

Size Does Matter

To put the potential horrific effects of asteroids into perspective, we can use past asteroid encounters to determine the likely scale of catastrophic damage that would likely occur.

An asteroid about 40 meters in width could level the largest cities on the globe. An asteroid or comet of 400 meters, similar in size to the asteroid which NASA has forecasted to come near the Earth on Halloween, would cause serious geological damage to an entire continent.

An asteroid about 1000 meters or larger, would likely end most life on Earth.

Trick Or Treat

Doomsday preppers are exceptionally excited regarding what NASA scientists are tracking and forecasting for asteroid 2015 TB 145. This 400 meter-wide (1,300 feet) is tracked using optical observatories and the radar technology of NASA’s Deep Network at Goldstone, California. Known as the ‘Great Pumpkin’ Halloween Asteroid, it is predicted to safely travel slightly beyond the moon’s orbit on October 31 at 10:05 a.m. PDT., before returning back on its circular journey into the vast realm of our solar system.

According to the Minor Planet Center, which catalogs Near-Earth objects (NEOs) this Halloween’s asteroid visitor is the closest known approach by any substantial celestial object until asteroid 1999 AN10 – which is a massive 800 meter sized object, whose orbit will return it near our moon in August 2027. ~

Resources And References Relating To This Subject Matter.

Halloween Asteroid a Treat for Radar Astronomy — http://neo.jpl.nasa.gov/news/news190.html

The Tunguska Impact — 100 Years Latter  — http://science.nasa.gov/science-news/science-at-nasa/2008/30jun_tunguska/

Near-Earth Object Program — http://neo.jpl.nasa.gov/

Near Earth Object Groups — http://neo.jpl.nasa.gov/neo/groups.html

NEO Earth Close Approaches — http://neo.jpl.nasa.gov/ca/

Chicxulub Crater

Asteroid to narrowly miss Earth on Halloween — http://www.cnn.com/2015/10/21/us/asteroid-earth-nasa-halloween-feat/

Asteroid that could wipe out London — http://www.express.co.uk/news/science/592987/End-of-the-world-asteroid-Blood-Moon-September-apocalypse-armageddon-comet-meteor

New Brain-Based Learning Strategies Explored — To Help Achieve Your Full Potential.

31 Dec

Rattlesnake R hike BPP_e11

Multimedia eLearning program by: David A. Johanson © All Rights

The author is a multimedia photographer, CTE instructor and a former Boeing scientific photographer.  For an alternative graphic view of this program, please visit:  https://bigpictureone.wordpress.com 

 “Learning is the Fountain of Youth, drink knowledge and stay young.” — DAJ

As an instructor in Career Technical Education, I’m continually developing eLearning, multimedia presentations, which help illuminate a spectrum of career and technical subjects. Finding and sharing new learning strategies, that are inspired from evidence based, neuroimaging and brain-mapping studies, is a dynamic process to help assist individuals in reaching their full learning potential.       Neural_Network_BPP_ae9763

Brain-based learning is a spectrum of teaching strategies, which uses neuroscience research on how the brain functions in achieving ideal development and potential.

Through evidence of how the brain learns, best practices are emerging that help accelerate individual learning performance. Cognitive science indicates emotional engagement is crucial for learning, regardless of the age of a student. Harnessing focussed attention forms the foundation for developing learning strategies. 

On April 2, 2013, the Obama administration introduced The Brain Initiative (Brain Research through Advancing Innovative Neurotechnologies). Also known as the Brain Activity Map Project, its goal is to map the activity of every neuron in the human brain. Due to the accelerated advances in neuroscience, we can utilize this knowledge to better understand the dynamics and potential of the human brain.

Structural Changes In The Brain Enhances Learning

According to the author, M.D. Judy Will’s, book titled, Research-Based Strategies to Ignite Student Learning — two decades of advances in neuroscience technology have documented evidence-based, neuroimaging to determine the most effective ways to learn. Leading universities and world-class research centers are charting the dynamic frontier of how the brain retains and access learned content.

Rattle_Snake_Ridge_Pano_BPP_ea1

Apparently, specific structural changes in the brain enhances learning or storage and retrieval of content. The anatomy of the brain includes components known as lobes that perform various cognitive functions and are connected through neuro pathways. These connecting circuits within the cerebrum are composed of cells, which can grow, due to learning activities.

Neurons, are nerve cells where information is stored, they use synapses as a junction to transfer signals to other neurons. The networks of neurons are connected by extension, of cells, know as dendrites. Dendrites are used to transfer information similar to wires or cables within a computer that function to transfer data. Numbers and size of dendrites increase when activated by a variety of learning experiences.         

Photo-illustration of a neural network.

Photo-illustration of a neural network.

The brain’s plasticity is remarkably flexible in its ability to allow dendrites to reform and reorganize its networks of neurons. These pathways of dendrite-neurons are capable of decrease or robust increase, depending on the use of sensory activities, initiated by external auditory, visual or motor stimulus (multisensory). Various regions of the brain, will respond more actively, depending on the particular type sensory input. This is why various learning activities, which uses multi-mode sensory stimulus can enhance memory retention and promote overall learning performance.  ESD Strat Direct 2014 BPP_142

Using brain-mapping procedures, researchers have determined active regions of the brain where a person process specific types of information. In addition, neuroscientist can see how this data is more efficiently used by other components of the brain.

Increased Variations Of Memory Pathways, Accelerates Retention of Knowledge And Skills

Research indicates, by using multiple pathways for sensory stimulus, increases the number and size of dendrites, therefore, the brain’s plasticity allows for enhanced neuron networks. In conclusion, the more sensory inputs a learner can use to acquire information, the greater opportunity for an individual to recall that specific content.

The brain has a great redundancy of neuron networks or pathways, so much so, that inactive neuro pathways are removed in a process termed as pruning. Throughout the life of an individual, the brain uses this pruning process to allow for more efficiency. Consequently, the neuron networks, which when used more frequently, are enhanced in thickness and performance.

A Key For Developing More Brain Connections

Enhancing stronger neuro circuits and creating more connections to improve learning is the goal of brain-based teaching.

When a learner experiences and reviews visual content, neuro networks are enhanced connecting to the posterior lobes region of the brain, which is responsible for processing optical stimulus. Accordingly, when a student hears the corresponding instruction, audio input is channeled using neuro pathways to the brain’s temporal lobes that process auditory signals. This redundancy of information ensures the brain will increase the likelihood of recalled content, due to interconnectivity components of the brain.     Neural_Network_BPP_ae9766

 .

 .

Event memories, are classified as recollections, with emotional magnitude associated with them. An occurrence of a dramatic event creates a strong sensory input that intensely uses neural pathways to store memories in the limbic system. The retention of shared content in another region of the brain enhances the opportunity of memory recall.  An increase in the extent of sensory inputs, means more channels to actively retrieve content from stored memories.

Most people can easily recall events taking place years in the past, through experiencing a form of nostalgia. The smell of grass clippings may bring back thoughts of a long-lost summer day — hearing a song can trigger vivid memories through the limbic system’s powerful use of sensory input.  Astia Antq Italy BPP ae0178

Facilitators who use a variety of instructional media to demonstrate the same subject matter, will increase the opportunity for learners to comprehend and retain that content. Again, by engaging a diversity of neural pathways, facilitates connecting to more stimulus processing regions of the brain. Similar to computers, the brain’s increase use of processing resources allows for quicker retrieval and storage of data.

Developing Learning Activities, Which Build Upon Students’ Existing Experiences, Ensures Greater Success

Any learning activity that actively personalizes a learners’ involvement in the process, will increase memory retention and meaning of the content. Also, a teacher or instructor should utilize surprise or uniqueness in the presentation of content, so as to capture the attention and focus of a student.

Craig DeVine, CTE instructor, working with students enrolled in Mountlake Terrace HS's, STEM Magnet School.

Craig DeVine, CTE instructor, working with students enrolled in Mountlake Terrace HS’s, STEM Magnet School.

In fact, effective teachers and instructors have intuitively used some of these brain-based instructional strategies, well before brain-mapping science was developed. Educators formally assessed the effectiveness of these methods through test results, however today, evidence-base neuroimaging is confirming the scientific reason for the learning success.

Here are some brain-based activities for students to benefit from, by being personally involved with how they input the lesson or content.

I’ve had the opportunity to use “concept and mind mapping” as a student learning

This

This “word cloud” is a form of “concept or mind mapping” to enable better recall and to stimulate creative thinking.

activity, in the classroom for Career Technical Education courses. This personalized learning activity is effective for note taking and enhancing recall. By assessing test results and interviewing individual students on their comprehension of the content, this activity proved successful in achieving the assignment’s learning objective. This technique may not work for everyone, however, cognitive research has shown the great advantage of activating more regions of the mind to enhance neuron pathways for greater memory recall. Link for creating “word clouds” — http://www.wordle.net

Trends In ELearning Demand, Correlates With Neuroimaging Evidence Of Brain Based Learning Success

The Research Institute of America, recently published a study indicating eLearning increased information retention rates by 60 percent. A report produced by IBM, indicated companies using eLearning programs have the potential to increase productivity of up to 50 percent. Essentially, eLearning is a multimedia rich environment, which combines photographs, video, audio, graphics and text to produce an enriched educational experience. Corporate and post-secondary education is fueling a massive growth in eLearning. According to a leading market research firm, Global Industry Analysts forecast a $107 Billion investment, internationally, in eLearning programs by the end of 2015.

 

Rattlesnake R hike BPP_e11“The meaning of ‘knowing’ has shifted to being able to remember and repeat information to being able to find and use it.” (National Research Council, 2007)

 

ESL Teacher Resource — Practical Ways Brain-Based Research Apples To English As A Second Language (ESL) Learners

http://iteslj.org/Articles/Lombardi-BrainResearch.html

Links & Resources For Brain-Based Learning

http://www.whitehouse.gov/share/brain-initiative

http://www.livescience.com/41413-momentum-builds-for-obama-s-brain-initiative.html

http://www.ascd.org/publications/books/107006/chapters/Memory,_Learning,_and_Test-Taking_Success.aspx

http://www.brainbasedlearning.net/guiding-principles-for-brain-based-education/

http://www.edutopia.org/article/brain-based-learning-resource-roundup

http://www.funderstanding.com/theory/brain-based-learning/brain-based-learning/

http://www.sedl.org/scimath/compass/v03n02/brain.html#8

http://edglossary.org/brain-based-learning/

Links & Resources Brain-Based Best Practices

http://www.teyl.org/article13.html

http://files.eric.ed.gov/fulltext/ED510039.pdf

http://www.seenmagazine.us/articles/article-detail/articleid/47/21-sup-st-sup-century-focus-brain-based-learning.aspx

Links & Resources Forecasting Growth Of Multimedia eLearning

http://www.forbes.com/sites/tjmccue/2014/08/27/online-learning-industry-poised-for-107-billion-in-2015/

http://elearningindustry.com/top-10-e-learning-statistics-for-2014-you-need-to-know

http://www.ambientinsight.com/reports/elearning.aspx

Reviews Of Learning Sites Using Brain-Based Games & Techniques

http://www.businessinsider.com/do-lumosity-and-other-brain-training-games-work-2014-1

http://www.businessinsider.com/lumosity-review-2014-2#theres-some-evidence-that-it-can-produce-short-term-specific-training-effects-that-do-not-generalize–a-small-if-fleeting-boost-to-your-working-memory-capacity-for-example-but-this-can-hardly-be-confused-with-achieving-your-full-potential-8

Links To Cognative Or Brain-Based Learning Sites – Often These Sites Offer Free Trials

http://www.lumosity.com

http://www.rebilderu.com

——————

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

GONE IN 30 SECONDS…

30 Oct
Antares_launch_graphic_ae2
It’s estimated that an average of 8 percent of all commercial rocket launches end in failure.
Multimedia eLearning program by: David A. Johanson © All Rights
David Johanson is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. All content, including photography, graphics and text (unless otherwise noted) was created by the author.
To see an alternative graphic format of this program, please select:  ⇒  https://bigpictureone.wordpress.com
Learning objectives Of This Program Includes:
≥ Definition and meaning of space law
 History and development of  space law
≥ History and development of 20TH and 21ST Century Rocket and Launch disasters
≥ How, where and why rocket launch sites and space portals are located on the globe      
 ≥ Potentially life threatening activities and components of rocket launches                                                                                                                        —————————————————————————————————————–
.
The Antares 110 rocket engines roared as they illuminated their departure from Earth — seconds later,  appearing as if mortally wounded, the multi-staged rocket suddenly lost momentum and sank downward, creating an explosive tower of flames. Over the launch site’s PA system an urgent command required all media personnel to leave their equipment and evacuate immediately. It was reported no deaths had occurred — however the total environmental damage,  the launch  site cleanup and insurance liability issues are yet to be assessed.
 Orbital rocket explodes after launch

antares-rocket-explosion-orb3-nasa-photo-BPP_ae3

 NASA’s video of Antares rocket explosion http://www.youtube.com/watch?v=aL5eddt-iAo
This video shows, press journalist and photographers ordered to evacuate as the Antares rocket explodes and unleashes toxic clouds of vaporized solid rocket propellant. Winds should be blowing to the east, so that burning propellant dissipates over the Atlantic Ocean — not heading west towards potentially populated areas, as is indicated happening in this video.  ⇒  http://www.youtube.com/watch?v=IclTka711xo
On October 31ST, just three days after  Orbital Sciences, Antares rocket launch explosion, Virgin Galactic’s SpaceShipTwo (SS2) disintegrates in an upper altitude reentry over California’s Mojave Desert. Unfortunately the space plane’s pilot was killed, as the remaining components of the craft slammed into an unpopulated areahttp://www.youtube.com/watch?v=dy1k5s7Fbl0  ⇒http://www.theguardian.com/science/2014/nov/02/virgin-galactic-spaceshiptwo-crash-investigators-fuel-warningsPhotograph: Kenneth Brown/Reuters

Photograph: Kenneth Brown/Reuters

 

What Goes Up, Must Come Down 
Rocket launch projects have always had to contend with laws of physics, in particular, Newton’s law of gravity. Today, these multimillion dollar programs are governed by another set of laws involving multinational, liability space laws. These binding laws are for protecting individuals, communities and the environment from impacts caused by, man-made objects launched into space or subsequent damage of corporate or national operations in space.
orbital_crs3_launch_milestones_eCase Study: The first record of a space law liability occurring was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages in sending objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.”                  Satellite_crash_BPP_e1070
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law assesses the liability for damages caused by space debris to the nation or agency responsible for its original rocket launch.
By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.”Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Sky_look_ BPP_ae208Because so many international languages are used for creating these technical agreements — terms and meanings  are often misinterpreted. There are linguistic limitations and a general lack of definitions to adequately cover all the specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space, including corporate, cultural and religious interest, adding to the complexity of governing space.
Although most large “space debris” is monitored  with top priority for enabling reentry over uninhabited areas such as oceans and deserts — satellites or sections of rockets still have potential for an unexpected re-entry over an inhabited area.   Hawa_Futur_BPP_e26
Cuba Gives A New Meaning To A Cash Cow
Case Study: In November of 1960, the second stage of a U.S. – Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Eventful And Tragic Rocket Launches Associated With Space Exploration
American physicist, Dr. Robert H. Goddard is the father of modern rocket propulsion. Goddard’s published rocket research during the 1920s, is what German military scientist used to help develop the liquid fueled V2 rocket, which terrorized Europe towards the end of WWll. The V2 (technical name Aggregat-4 or A4) rocket was the first human made artifact to leave the Earth’s atmosphere and reach into space. The basic design of modern rockets has changed little in the 100 years since Goddard was awarded a U.S. patent in 1914,  for a rocket using liquid fuel.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched into space related missions, 8 percent of rocket launches ended in some-type of failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of individuals, including; astronauts, cosmonauts and civilians, along with billions of dollars of property and payload losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

Vanguard TV3, December 6, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit. A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately, this launch mission was not ready for prime-time and occurred as a reflex reaction to the Soviet Union’s surprise aerospace success of launching the world’s first satellite, Sputnik, on October 23, 1957. http://www.youtube.com/watch?v=zVeFkakURXM
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989) http://www.nytimes.com/1989/09/28/world/1980-soviet-rocket-accident-killed-50.html
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAuliffe, selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.            http://www.history.com/topics/challenger-disaster/videos/engineering-disasters—challenger
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath. This event was most likely the worst rocket launch disaster to date, due to the massive loss of human life. Disaster at Xichang | History of Flight | Air & Space Magazine  http://www.airspacemag.com/history-of-flight/disaster-at-xichang-2873673/?c=y%3Fno-ist   video of the rocket launch disaster ⇒ https://www.youtube.com/watch?v=8_EnrVf9u8s
iW_V2c9Uw6hI_aeDelta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.) The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and Spaceports are geographically chosen to mitigate rocket launch accidents. US rocket disasters –     http://www.youtube.com/watch?v=Y4-Idv6HnH8
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars. http://www.military.com/video/explosions/blast/titan-iv-explosion-at-cape-canaveral/1137853205001/
VLS-3 rocket, launch – August 2003, Alcantara (Brazil) – rocket exploded on the launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site. http://usatoday30.usatoday.com/news/world/2003-08-22-brazil-rocket_x.htm 
Global location & GPS coordinates of major spaceports &launch sites. Do you see any similarities in the geographic locations of these launch sites? What  advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

Global location & GPS coordinates of major spaceports & launch sites.
Do you see any similarities in the geographic locations of these launch sites? What advantages do these locations have regarding “Space Law?” For most rocket launches, which site has the greatest geographic advantages & why; which has the least advantages & why?

Rocket launch debris fields are color keyed in red  & Links to space port’s web sites included. (CLICK ON MAP TO ENLARGE) Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why? 4.) Which has the least advantage & why?
Location, location, location is a huge benefit for rocket launch sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice they’re located  in remote, uninhabited areas. Another feature most spaceports share is their proximity to large bodies of water, which are located in an easterly direction (with the exception of the U.S. Vandenberg site.)  Rockets are  launched over oceans to minimize the risk to people or property from  catastrophic accidents, which includes falling launch debris and toxic clouds of burnt fuel propellant. Liability from a launch vehicle is the main reason why all ships and aircraft are restricted from being in water anywhere near or underneath a rocket’s flight path.  Rocket’s debris can contain highly toxic forms of unspent fuel and oxidizer, especially from solid propellant fuels.Sattelite_BPP_e82
The majority of  rockets are launched in an easterly direction, due to the Earth’s easterly rotation. This procedure gives the  rocket extra momentum to help escape the Earth’s gravitational pull. An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity is gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel ( 13 percent less fuel  required for equatorial launches) to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
Photo illustration of space debris using a NASA photo of Skylab — David A Johanso

Photo illustration of space debris using a NASA photo of Skylab — David A Johanson

International space law is emerging from its infancy, attempting to clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exists today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?
Music video portal of rocket launches (nostalgia enriched content):
Boards of Canada – Dawn Chorus http://www.youtube.com/watch?v=rfVfRWv7igg
Boards of Canada – Gemini – http://vimeo.com/68087306
Boards of Canada – Music is Mathhttp://www.youtube.com/watch?v=F7bKe_Zgk4o
Links And Resources, For Space Law And Related Issues

http://definitions.uslegal.com/s/space-law/

http://www.thespacereview.com/article/2588/1

https://www.gwu.edu/~spi/assets/docs/AGuidetoSpaceLawTerms.pdf

http://digitalcommons.unl.edu/spacelaw/38/

 

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063

 WA Okang SatDshBP_e1103
[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Will The Next Jet Airliner You Fly Already Be Obsolete, And Ready for Early Retirement?

9 Oct

 

Boeing_PaineF_BPP_ah7069
Multimedia eLearning program by: David Anthony Johanson ©  – All written & graphic content on this site (unless noted) was produced by the author. Add: 2.0  For an alternative graphic interface click here: https://bigpictureone.wordpress.com
This multimedia essay includes an eLearning program for secondary/post secondary education and community learning. Assessment tool: A quiz and answer key is located at the end of the program. Learning content covered:  aerospace/airliner— aerospace engineering, avionics, economics & business, environmental  footprint,  financing, manufacturing, marketing, obsolescence management, technology. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning.  Key: Words or phrases are italicized to emphasize essential concepts or terms for enhanced retention and learning.
[ Disclaimer: David Johanson is a former Boeing scientific photographer and currently has no stock holdings or a financial interest in: Boeing, Airbus or any other companies referenced in this program. Research in this article has been cross referenced using at least three sources, however, all perspectives and opinions represented in this program are those of the author. Subjects covered: aerospace technology, engineering, obsolescence management, marketing, economics and business subject matter. ]

 

Like seeing a mirage in the distance, shimmering sunlight reflects off rows of metal fuselages densely packed in the summer light. A surreal scene of Boeing jet airliners dominates the view, while forming a metallic wall around sections of a regional airport. Boeing_Paine_Field_747_ae3013
Billions of dollars worth of jet airliners are now double parked around Paine Field, Snohomish County Airport, in Everett, Washington. “This development indicates the current success, Boeing is having at landing airliner orders and the result you’re seeing represents a record amount of aircraft production,”said Terrance Scott, a spokesman for Boeing Commercial Airplanes.
He said the Company is leasing this space from Paine Field so that planes can have the remaining work completed and be ready for delivery to their customers — also, this isn’t unique to Everett, but is happening at Boeing manufacturing facilities at Renton Field and at Boeing Field in Seattle.
“Boeing has always been a good neighbor and a fine customer for the airport, they are currently leasing areas to park their aircraft and the revenue generated is appreciated.” said Dave Waggoner, Airport Director at Snohomish County Airport — Paine Field.

Boeing_Paine_Field_BPP_ae7131

                    Boeing_Paine_Field_BPP_ae3009

Boeing_PaineF_BPP_ae7127

 

 

 

 

 

 

 

The global economy’s steady growth has increased passenger traffic, which puts pressure on the airlines to purchase new aircraft for satisfying  demand. Continued drops in jet fuel prices benefits air travel industry profits, giving further incentives for fleet investments. Additionally, with historically low-interest rates, lending institutions find new opportunities in aviation financing, enabling expansion of corporate sales. However, financing for used planes is another matter. Cash is drying up for previously owned jetliners — which puts pressure to part-out, then scrap relatively newer-used aircraft.
Could The New Normal Be Shorter Aircraft Service-Life For Airliner Fleets?
Recently, published reports noted a shift towards an assumed obsolescence and accelerated scraping of newer airliners — well before structural integrity or air worthiness becomes a problem, middle-aged aircraft are experiencing vulnerability to an early end-of-life. Clearly, accelerated scraping of newer aircraft is not due to any structural concerns, but rather, cyclical conditions of the industry. To appreciate these concerns a review of an airliner’s operational lifespan may help clarify some of the issues.
Boeing_Paine_Field_BPP_A3083Boeing_Paine_Field_BPP_A100Boeing_Paine_Field_BPP_a3064
Aircraft manufactures use what is known as pressurization cycles to determine an airliner’s operational lifespan. A pressurizing cycle includes distinct aircraft flight activities — takeoff, climbing until it reaches a cruise altitude and then descending to make a landing. During this process, air is pumped into the fuselage to pressurize the cabin for passenger comfort. This repeated pressurization flexes or expands the fuselage — consequently stress is put on various connecting components, including fasteners and rivets, which holds the structural integrity of the plane together. After a certain number of landing pressurization cycles, stress or metal fatigue can begin to develop, eventually causing small cracks around the fasteners. Pressurization/landing cycles mainly concern the life of an aircraft’s fuselage, wings and landing gear.
The interior of fuselage section, showing perpendicular rings, which are called frames.

The interior of fuselage section, showing perpendicular rings, which are called frames.

Maintenance schedules and lifespan of jet engines are measured in the number of flight hoursAircraft engines, followed by landing gear and then avionics are the most valuable components for part-out and dismantling specialist operations. Ultimately, engine condition is the major factor in an owner’s decision to part-out an aircraft.
For short flights, single or smaller double aisle craft is used to carry passengers, which may go through many landing or pressurization cycles for everyday operations. The more takeoffs and landings, means a shorter operational lifespan for the plane. On long overseas flights, wide body or jumbo jets such as 747s experience fewer landing cycles. These larger airliners, especially ones use for cargo operations can have longer lifespans of upwards of 20 or 30 years. In the U.S., the FAA requires an initial inspection on Boeing 737s, which have 30,000 takeoffs and landings using electromagnetic testing. Mandatory inspections are required for finding cracks in the fuselage or metal fasteners.
Dream_Line_BBP_b7878
Boeing has a history of ‘over-engineering’ components of its aircraft, which is actually a good thing for ensuring passenger safety and for an extended service-life of the aircraft. Historical evidence of this conservative engineering practice is documented in WWII archival film footage of blown-apart B-17s returning from a mission and safely landing. There are more recent examples of Boeing commercial aircraft surviving dramatic inflight catastrophic failures, with most of the passengers and crew landing safely.
Photo-illustration of an aircraft end-of-life center (aircraft boneyard.)

Photo-illustration of an aircraft end-of-life center
(aircraft boneyard.)

Compound Forces Working Against Long-Life-Cycle Aircraft
What are the current forces, which hasten the end-of-life of a commercial jet airliner? Recurring cycles or patterns of economic and technological events influences the commercial aircraft industry on a daily basis.  Various ripple-effects of these cycles can quickly alter new and used aircraft asset valuation. Airline leasing companies have a major influence, in providing their customers with the aircraft assets they need. Unless the buying customer has solid credit, it’s doubtful they can secure financing for previously-owned airliners. Also, tax incentives exist for Airline companies to use depreciation right-offs by decommissioning  all but  the most advance aircraft assets.      Calculator changecphoto illustration
Maintenance requirements are a long-term, yet fluid, financial concern for a company’s airline fleet. The newer designed aircraft are manufactured with significantly fewer parts than previous models. Consequently, reduction in parts has an impact on reducing maintenance expenditures — including smaller service crews, hours spent on inspection and a reduction of overall repairs. Also, spare parts inventories for maintaining the aircraft’s optimum performance can substantially be reduced compared to an older aircraft. The cost savings benefits are compelling incentives for eliminating older, higher maintenance, aircraft assets.
Boeing_Flt_Line_BPP_bg0187
As mentioned previously, the considerable reduction of parts used in manufacturing newer aircraft provides an immediate benefit of up to 20 percent weight reduction. Without compromising strength or aircraft structural  integrity, the cost savings from less weight begins the day an airliner is put into service. Traditionally, fuel-efficiency  is the “holy grail” used for selecting an aircraft — the amount of fuel-burn affects the daily operational cost of an airline company. After a decade of service an older airliner reaches mid-life, it may require upgraded and modification conversions to the aircraft’s wings (winglets) or need new fuel-efficient jet engines. However, this is a threshold of diminishing returns from such investments. As a result, keeping an older aircraft competitive with newer models may not pay-off at a certain point. That’s when retirement and parting-out the airliner begins to make economic sense and the aircraft’s end-of-life management begins.
Boeing_Paine_Field_BPP_ae3134
Inevitable Problems Facing Aircraft Electronic Systems (Avionics) Obsolescence
A critical and perplexing problem facing commercial airliners is how to ensure its critical avionics systems,  evolve and stay up-to-date. Avionics provides the central nervous system or a CPU framework for a commercial aircraft. It’s a marvelous matrix of advanced electronic systems technology, which constantly communicates with itself, the pilots and the outside world.  More so than any other components making up an aircraft’s technological system, its management and functionality duties are beyond comparison. Each year avionics systems physically contract in size, yet they expand immensely in functionality and system management.
Cell_Phone_Tlk_BPP_et82Here’s an example to help clarify this dichotomy of physical contraction and expansion of technical functionality. Your smartphone can be used as a basic representational model for avionics obsolescence. The phone you’re holding in your hand has a superior mobile graphics processor and sheer number-crunching power advantage over IBM’s Deep Blue supercomputer of the late 1990s. Yet, you can hold your phone in hand, compared to Deep Blue, which was the size of a large refrigerator. However, advanced your smartphone is today, a year from now it’ll be obsolete and two years from now… a quaint antique.  If you grabbed your smartphone and considered the example, you just experienced Moore’s law of observation — ‘over the history of computing hardware, the number of transistors in a dense integrated circuit doubles approximately every two years.’                                                                                   circut_board_watch_BPP_a70
Now, imagine trying to update  a complex system such as an airliner’s avionics bay, in five-years, 10-years or 15-years. The installation and the majority of electronic systems are not made by the Aircraft’s original equipment manufacturer (OEM) such as Boeing or Airbus. Moreover, the vendors or suppliers 10 or 15-years from now who were the OEM, could be out of business.  In the meantime, new replacement components may have to substitute the obsolete equipment. However, the aircraft industry is highly regulated by government agencies, which require strict certification of equipment modifications. As a result of these constraints, aircraft manufacturers such as Boeing,  developed obsolescence management strategies to help mitigate these ongoing concerns. But there are always unforeseen obstacles and many moving parts to coordinate before the necessary electronic components are available when needed. Clear, transparent communication is necessary between internal engineering and purchasing departments. Sucessful collaboration at all levels can present major challenges, especially if the objectives and timetables are not each group’s priority.
So aircraft avionics are the vulnerable underbelly of airliner obsolescence — with financial consequences associated with accelerated, technology — necessitating complex and expensive electronic upgrades.
Boeing_747_PF_BPP_a3011
 Airspace Navigation Service Providers (ANSP), which includes the FAA and the European counterpart EASA — have established new mandate requirements for avionics component upgrades. The purpose of this technology is for enhanced data link digital communication, which interacts instantly with aircraft Flight Management Systems (FMS). These requirements include, Automatic Dependent Surveillance-Broadcast (ADS-B), Controller-Pilot Data Link (CPDLC) and the Future Air Navigation System (FANS) enables text messaging and global position through satellite communications. The new civil aviation mandates are part of  the next generation air traffic computer technology called NextGen, which represents air traffic infrastructure’s future for the next 10 to 15 years.
Used Aircraft Components, Harvested For Premium Returns, Is the Retired Airliners Last Call In Service Before Its Final Destination.
Perhaps aircraft boneyards are flying under the radar as virtual gold mines, as refurbished parts are easily sold at market value. The savings of buying used, over new aircraft parts is incentive for expanding the market. Engines, landing gear and avionics are the most expensive components of an aircraft. These prized components are a highly valued commodity and are quickly snapped up. Specialized systems are not manufactured by companies such as Boeing or Airbus, but by outside OEM. Parts sold brand new by the manufacturer are considerably more expensive than buying used.
Money_int _BPP_a223
Next Generation aircraft such as the Boeing 737-600 and even a 737-800, which was reported had a hard-landing, reached their end-of-life as scrap.  Also, Airbus has had similar, newer single-aisle aircraft models reached their final destination in the aviation boneyard.  Aircraft Fleet receivable Association (AFRA) estimates 600 commercial jet airliners are scrapped yearly. By 2023 it’s estimated the number of commercial airliners scrapped will reach 1000 per-year.

.

Efforts Of The Aviation Industry To Leave A Smaller Environmental Footprint.
In 2008, the Boeing Company reached out to Airbus in collaboration, with the goal to vastly improve aircraft recycling technology. Airbus estimates they are recycling 85 percent of the entire aircraft, the remaining cabin interior amounted to 15 percent and was the only materials added to landfills.  World_box_BPP_et424
The best takeaway from the issues surrounding accelerated airliner service-life is that less fuel is consumed by the newer fleets. As older, less efficient aircraft are replaced, a 20 percent reduction in fuel emissions will not enter the atmosphere from the next generation aircraft replacements. If the world’s commercial airline manufactures continue to devote more effort towards efficient recycling of past generation aircraft, we can look forward to clearer skies ahead.                                                                                                                                                                                                  ~

Boeing 747 Euro photo illustration

 

 

 

.
Special thanks to The Future of Flight Museum, for allowing photos to be taken from their excellent observation deck.           http://www.futureofflight.org 

 

Airliner Obsolescence Quiz  (Read the entire question before answering)

1. ) What three economic incentives are currently influencing airlines to purchase new aircraft for satisfying travel demand. ________________________________ _________________________________ & ________________________________

2. ) (True or False) Structural integrity or air worthiness of current generation airliners are the main issue why these aircraft are being retired early. _______ If you answered false, give at least one other reason why this is occurring. __________________________________________________________

3. ) Aircraft manufactures use _____________________ cycles to determine an airliner’s operational lifespan.
4. ) What are three distinct aircraft flight activities used to determine an airliner’s operation lifespan? _________________________ __________________________ ____________________________________________
5. ) Maintenance schedules and lifespan of jet engines are measured in the ________________ hours.
6. ) Aircraft _________ followed by ____________ and then ___________ are the most valuable components for part-out and dismantling specialist operations. Fill in the blanks above by selecting the proper order of component value, using the following list: (bulk heads) (wire bundles) (avionics) (engines) (landing gear)
7. ) Selecting from the choices listed below, which aircraft will typically experience more pressurization cycles and why? A or B ____________ explain why _____________________________________________________________ ______________________________________________________________________ A. Jumbo jet (larger, multi isle aircraft) which is used for longer, overseas flights. B. Smaller, single isle jet airliners, which are used more for shorter, domestic flights.
8. ) Multi-isle airliners or jumbo jets, used for longer international flights or for cargo operations can have longer lifespans of upwards of ____ – ____ years. Select the best match from these sets: 5 − 15, 10 − 15, 20 − 30, 30 − 40 years.
9. ) Explain why a larger commercial jet airliner, which flies longer over sea routes, would have a longer operational life than a smaller aircraft, which is used on much shorter routes? __________________________________________________ ________________________________________________________________________

10. ) What procedure is required by the FAA for a Boeing 737 airliner, which completes 30,000 takeoffs and landings?__________________________________ ________________________________________________________________________

11. ) The newer designed aircraft are manufactured with significantly fewer parts than previous models, list at least two reasons why this is an advantage and would make older aircraft obsolete? ________________________________________ ______________________________________________________________________
12. ) What traditionally has been considered the “holy grail” used by the airline industry for selecting an aircraft? _________________________________________
13. ) When permanent retirement and parting-out the of an airliner begins to make economic sense, what form of management begins for that aircraft? ____________________ Select one of the following: end-of-days, end-of-life, retirement cycle, recycle phase.
14. ) What critical system of an airliner is considered its “central nervous system” or CPU for overall control of the aircraft? ________________________________ Give at least two reasons why this system contributes to a jet becoming obsolete? _______________________________________________________________ ________________________________________________________________________

15. ) Approximately how many aircraft are permanently retired or scrapped in a year? __________________ By 2023, how many aircraft are expected to be scrapped? _______________________________________________________________________

16. ) Regarding commercial aircraft recycling technology, what percentage does Airbus estimate it is recycling of the entire airliner ___ 40 %, 65 %, 75 % or 85 % What percent of the aircraft is not recyclable ___ 60 %, 50 %, 25 %, or 15 % What part of the airliner is not recyclable ____________________ and where does it end up? ___________________________
The answer key is at the very bottom, after program sources & related links 

.
Sources & Related Subject Matter Links
This link shows live air traffic anywhere in the world. View how congested the sky’s are over the world’s busiest airports.

http://www.flightradar24.com/47.79,-122.31/7

 

Aircraft Bluebook – Used for aviation asset valuation

http://www.boeing.com/assets/pdf/commercial/aircraft_economic_life_whitepaper.pdfhttp://marketline.squarespace.com 

http://www.boeing.com/boeing/companyoffices/aboutus/brief/commercial.page

http://www.airbus.com/innovation/eco-efficiency/aircraft-end-of-life/

http://www.airspacemag.com/need-to-know/what-determines-an-airplanes-lifespan-29533465/?no-ist

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/ObsolescenceFinalReport.pdf

http://aviationweek.com/awin/nextgen-obsolescence-driving-avionics-refurbs

http://www.theguardian.com/business/2013/jun/11/boeing-commercial-planes-double-asia-pacific

http://www.airliners.net/aviation-forums/general_aviation/read.main/5740876/

http://avolon.aero/wp/wp-content/uploads/2014/06/Aircraft_Retirement_Trends_Outlook_Sep_2012.pdf

Article & photos on U.S. aircraft boneyards

http://www.johnweeks.com/boneyard/

 

 

http://www.dailymail.co.uk/sciencetech/article-2336804/The-great-aviation-graveyard-New-aerial-images-hundreds-planes-left-die-American-deserts.html
Article, photos & interactive map of U.S. aircraft boneyards
http://www.airplaneboneyards.com/commercial-aviation-airplane-boneyards-storage.htm
Excellent aerial video of Airplane Graveyard (Mojave Airport, California)
http://www.youtube.com/watch?v=6RjaoR7Zk2s
Future of Flight Museum -

Future of Flight Museum

Airliner Obsolescence Quiz Answer Key

1. )  Satisfying increased travel demand Fuel cost savings  &  Historically low-interest rates for financing new aircraft
2. )  True Newer aircraft are replacing airworthy, older aircraft due to much less operating cost, including fuel savings and maintenance issues.
3. )  Pressurization or Landing cycles
4. )  Takeoff Climbing to cruise altitude Landing
5. )  Number of flight hours
6. )  Engines  landing  gear avionics
7. )  B Shorter service routes typically involve more landing and takeoffs as the airliner satisfies domestic travel demand
8. )  20 − 30
9. )  An airliner flying overseas route would most likely have fewer takeoffs and landings, due to the longer flight time required to reach its destination
10. )  Electromagnetic testing for finding cracks in the fuselage or related components
11. )  Fewer parts can result in an airliner weighing up to 20 percent less than older models, which can correlate to the same percentage of fuel savings. The maintenance cost is substantially lower allowing for more savings over older aircraft with more component parts.
12. )  Fuel-efficiency
13. )  End-of-life
14. )  Avionics electronic components used for avionics may not be available or upgradeable due to obsolescence upgrading obsolete avionics may require expensive redesign
15. )  Up to 600 1000
16. )  85 %   15 %   Cabin interiors Landfills

  [contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

 

The Environment, our Earth’s Lost Frontier?

22 Apr

 

Arctic_Tundra_Oil_Field_e1003

(On the left horizon, hydrocarbons are being released into the air, blemishes an otherwise clear arctic day.)

Multimedia eLearning by: David A. Johanson © All Rights

All Roads Lead to Nowhere

Early in my career as a photographer I received assignments which took me above the Arctic Circle. Construction companies and architects working for oil companies in Alaska’s North Slope hired me to photograph their on going developments. At that time the Prudhoe Bay oil field’s production had peaked due to years of sustained extraction. A new oil field near the Kurparuk River, west of Prudhoe Bay was the site I was sent to. The Kuparuk oil field is the second largest oil field in North America by area, and traveling by aircraft was the way I moved from site to site.

Roads and construction sites above the arctic circle, rely on heaps of gravel placed over the tundra’s surface to prevent them from sinking into the earth when the ground thaws. Traveling less than 100 feet off the tundra, at 150 miles per hour, the pilot of the Hughes 500D helicopter races to horizon. The orange shelters at the edge of the road, is our intended destination. These metallic enclosures are used to pump hot steam down-into the wells, for recovering a thick slurry of oil, locked deep below the frozen tundra.

Envirn_Indust_BPP_e0014

Arctic_const_Workers_A1104

Environmental stock photography for a New Dawn.

Alaska, the Last Frontier  

Flying above an older oil facility, it can clearly be seen — the years of oil production have left Rorschach-like-ink-blots, splattered on the surrounding tundra. I have not been to the oil fields for many years, but I was told at the time — ‘oil companies were trying to cleaning up their act, while leaving a smaller footprint.’ I pray what I heard was true, but as we know — accidents both large and small continue to happen.

On a clear day while flying above vast stretches of tundra, we spotted a small monument, which marked where Will Rogers and Wiley Post had been killed in a plane crash. I spotted dozens of randomly placed metallic cylinders near the site. My bush pilot brought the airplane down for a closer look and cynically said, those are abandoned, empty 50 gallon oil barrels… known as —“Alaska’s state flower.

 Environmental stock photography for a New Dawn.

An old barn in the shadow of Anacortes oil refinery.
There’s something charming about old barns as they weather over the years. This one with its organic wood earth tones, is contrasted against the metallic cylinders of an oil refinery in Anacortes, about 70 miles north of Seattle, on the edge of Puget Sound. On April 2, 2010 five workers were killed at this oil refinery as an explosion and fire ripped through part of the refinery.

EARTH Day seems to have more meaning as the impact of global warming, seismic and volcanic activity focuses our attention on the big picture.

Environmental stock photography for a New Dawn.

Our world is delicately balanced, spinning through space, with us all aboard along for the journey. At least one day, one week, out of a busy calendar year, we’re asked to give homage to our planet by being aware of its’ environment. In honor of this day, I’m sending out photographs and prose that reflect current events affecting our world’s environment.

30756_1424678490440_7205732_n

Earth Day 2010

“One World, One Planet.”
A fascinating, outdoor setting, with an incredibly diverse ecosystems is the Rainforest of the Olympic National Forest. It was a late summer day when I hiked down form Lake Osset, to where the rainforest meets the Pacific Ocean. This area has never been logged, the old growth forest here stands as it has for thousands of years.

After setting up a tent I walked along a trail leading to a lush meadow. A twig snapped a few feet away from me, revealing two unusual looking deer, grassing in the tall grass. Never have I encountered wildlife, where if I desired, could reach out and touch it. The deer could plainly see me; yet they made no effort to scramble away or even conceal themselves. The reason this wildlife seems tame is that they reside within a remote National park, where no hunting is allowed.  Slowly, I raised my camera loaded with my favorite Kodachrome transparency film. As I began to take a series of photos, I noticed unusual patterned markings on the deer’s body.  Refocusing my lens, amazingly, what appeared was a map of the earth, patterned on the deer. Last year I scanned the transparency, then enhancing it with Photoshop, the world continents clearly revealed themselves in what I’ve themed
– “One Planet, One World.”

Cabin_June_27BPP_2010_348

Have you ever gone back to a place and found what you had once treasured was missing? The longing for beauty, which once was, is a reoccurring theme used to select many photos in this essay.

Pearl_Harb_VC_BPP_a1406

Earth Day 2010

“Paradise Lost” –
The enchanting scene with a man gazing into the pools of water is from Whatcom Falls. My college roommate sitting on the moss-covered boulders is Mark Nishimura, a fine-art photographer, originally from the state of Hawaii. Mark asked that I photograph him in a place that was reminiscent of the waterfalls back home on Ohau. I used a Hasselblad and slow speed transparency film to help capture the dynamic range of shadows and highlights. This was one of my favorite places to photograph when I attended school at Western Washington University, in Bellingham. Many students would spend summer afternoons cooling off, diving and swimming amongst the deep pools of water. A short walk into Whatcom Park, placed you in a lush environment, under a thick canopy of evergreen trees, moss-covered vegetation with sounds of cascading waterfalls running throughout it.  Environmental Photography

Some years after this photo was taken, tragedy struck, instantly incinerating this charming environment. A refinery’s 16-inch fuel-line running next to the park, ruptured, spewing nearly 300 thousand gallons of gasoline into the creek. In an instant, the fuel ignited, creating a river of fire, which killed three youths fishing in the creek and sending a toxic vapor cloud six miles into the atmosphere. The fireball and plume of smoke was visible from Anacortes to Vancouver, B.C., Canada.  Now, ten years after the catastrophe, I plan to return to the falls and photograph the site with hopes that nature’s healing process is transforming it back to the way it use to be.

Environmental Photography

Environmental Photography

Environmental Photography

Earth Day 2014

“Paradise Found” –
I remember a photography teacher I had in college took us to a beach near Chukanut Drive. When he gave out the assignment, most of the class groaned; we were to pick a spot on the beach, stay within a 25-foot diameter and shoot a series of photos to tell a story. Most of us wanted to take our cameras and explore what the entire beach had to offer. Surprisingly, it was one of the best assignments I was ever given in school; because it broke the stereotype about how you were suppose to see. Within that small domain we discovered, a whole universe was waiting to reveal itself before the camera lens. That photography lesson has stuck with me since, although world travel is a passion, I realize that I really didn’t have to go any farther than my backyard to find great images and no matter what, if resourceful, amazing subjects can be found everywhere.

My home’s back yard is like an outdoor studio full of indigenous plants, birds and amphibians. We avoid using pesticides and only use natural fertilizers on the yard and garden. One afternoon I found this charming tree frog sitting on a leaf, warming itself in the sunshine. With a macro lens on my camera, I was able to get within inches of the frog and let the background merge into soft abstract forms. The photo makes me smile whenever I see it because it reminds me, I never have to go far to reconnect with nature.

Environmental Photography

On a moonlit night, traveling the back-roads of Washington and Oregon —
we found countless sentinels standing guard against the cold breeze of darkening skies.

Environmental Photography                  

The Future is Now…
Working tirelessly with the wind, turbines spin against the moon backdrop, producing ‘clean energy’ for the Pacific Northwest. Throughout the Americas and many other places in the world, the tide is turning as we move more towards wind and solar for a clean, renewable energy source.

World_box_BPP_et424

Web Links For Earth Day 

http://abclocal.go.com/wls/story?section=news/local/illinois&id=9511926

http://newyork.cbslocal.com/2014/04/22/tri-state-area-commemorating-earth-day-with-series-of-events/

http://www.earthday.org

http://news.nationalgeographic.com/news/2014/04/140421-earth-day-2014-facts-environment-epa/

http://www.slate.com/blogs/bad_astronomy/2014/04/22/earth_day_2014_a_few_fun_facts_about_our_planet.html

 

 

THE MARTIAN PROPHECIES: Earth’s Conquest Of The Red Planet

12 Mar

Mars Frontier series

Early Mars terraforming site inspected by an American first-generation colonist.
Essay, eLearning program, and multimedia content by: David Anthony Johanson © All writing and photography within this program (unless indicated) was produced by the author.
If you would like to see this essay in an alternative graphic format please visit our Science Tech Tablet site at: http://bigpictureone.wordpress.com/2014/03/04/the-martian-prophecies-earths-conquest-of-the-red-planet/
Fu-tur-ism                                                                                                                               noun
1. Concern with events and trends of the future or which anticipate the future.
Any sufficiently advanced technology is indistinguishable from magic. — Arthur C. Clarke
.
How Earth Conquered Mars And Successfully Colonized The Red Planet
March 2054

Mars Frontier series

.

.

.

The Evolutionary Mastery Of Mars
In a forty-year period, the march towards making Mars inhabitable, astonished the most optimistic futurist. A sequence of technological events and economic opportunities (commonly known as the Third Industrial Revolution) converged seamlessly, allowing for safe and efficient journeys to the fourth planet from our Sun. Now, human life has sustained itself and is beginning to thrive on Martian soil.
On Earth, three decades into the third millennium, unstable global weather patterns caused by environmental abuse to our oceans, created extreme ripple effects with appalling famines and droughts. Then, suddenly a horrific rain of fire appeared as a sequence of catastrophic meteorite strikes plagued Earth— hastening humanity’s efforts to reach for the red planet. Of all the planets in our solar system — Mars has proven the best hope as a lifeboat and as a refuge for life taking hold.
Collaboration from the World’s nations, aligned rapidly to expand the colonies beyond Earth’s low-orbit. These outposts are in a stable formation at Sun-Earth Lagrangian Points:  L2, L4,  L5 and beyond. The various sites are used to support manufacturing, exploration and asteroid mining operations. Once established, they became “stepping-stones” towards Mars. Distant supply and launch stations are currently expanding at Sun-Mars Lagrangian points, circulating Mars.

mars-map

Triumph Through Large Scale Asteroid Mining 
After the first three decades of daring space exploration in the late Twentieth Century, momentum was lost from lack of compelling mission. Chemical propulsion system limitations and lack of aerospace manufacturing beyond Earth’s orbit, slowed space exploration’s progress. Major superpowers lacked funding and political will to achieve great advances beyond low Earth Orbit.
As the Twenty-First Century progressed, collaboration of prime aerospace companies Boeing and Space X, developed, hybrid launch vehicles to accelerate humanity’s expanded presence in space. Private commercial ventures determined a great potential existed for mining valuable resources from near Earth asteroids and the Moon. The first company to successfully begin asteroid mining were Planetary Resources, with funding provided by wealthy technology luminaries.

Mars Frontier series

 

.

.

.

.

.

.

.

.

Mars Frontier series

.
Three-D Printing In Space – A Bridge To Infinity 
Early in the Twenty-first Century, new advanced technological tools were developed for flexible and efficient manufacturing. After revolutionary 3-D printing operations took hold in space, opportunities expanded rapidly to develop massive infrastructure beyond Earth’s orbit. Three-D printing devices made prefabrication of immense living and working sites possible on the Moon and various stationary points well beyond Earth’s gravitational influence.

.

Three-D printing for manufacturing space-station stepping-stones
.
Beyond Earth’s Orbit — Islands In Space
As the population of human enterprises rapidly expanded into deep space, exploration of Mars became practical and irresistible.
Using a spectrum of cybernetic applications, including artificial intelligences (AI), atomically precise manufacturing (APM) and 3-D printing provided cost-effective infrastructure manufacturing  to expand beyond Earth’s low orbit. The network of space station developments offers a growing population of skilled aerospace workers — dynamic living and work environments.
Molecular nanotechnology (MNT) produces an endless variety of manufactured goods for the inhabitants of interplanetary space. As the initial space stations quickly expanded and connected to one another, they became known as “Island Stations.” Adopting interplanetary codes for infrastructure support commonality is maintained for all inhabitants and guest visits by the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
A network of stepping stone islands, which initially were used to extend the reach of asteroid mining operations from stable points beyond a low Earth orbit, is essential for colonizing Mars.

Mars Frontier series

Approximately 10 million miles from Earth, a network of station islands is positioned as a gateway point to Mars. These station networks are mutually protected from solar storms/flares by their own artificial magnetosphere. Earth (blue dot) and its moon can be seen near the upper-center part of the photo.

Mars Frontier series

Revolution — Electro Magnetic Propulsion And Magnetic Shield Protective  Fields 
Revolutionary, electromagnetic propulsion systems, using super-cooled, conducting magnets and magnetoplasmadynamic (MPD) were developed for vastly superior performance over conventional chemical rockets. The time required to reach destinations such as Mars has been reduced significantly, by a factor of one year to less than two weeks. Initial funding from NASA and ESA, created a collaboration between Boeing, SpaceX and Virgin Galatic to produce these hybrid propulsion space craft. http://www.cbsnews.com/news/boeing-spacex-to-team-with-nasa-on-space-taxi/
The greatest threat to human space travel and colonization is from solar winds of magnetized plasma carrying protons and alpha particles, which can
Mars Frontier seriesbreak down DNA and lead to cancer. A magnetic coil shield system allows space craft protection from most harmful radiation by creating its own magnetosphere. This shielding system harnesses for universal applications to protect space station populations, inner planetary travelers and Martian colonies.
A high energy accelerator was developed on Mars using spectrums of solar energy to recreate a magnetic field to help produce a sustainable atmosphere.
Mars Frontier series
   An electromagnetic propulsion cargo ship as it begins entering a high energy state.

Mars Frontier series

 

Electromagnetic propulsion “asteroid lifter” encounters solar wind storm.   

star_lifter_bpp_a2054

solar_system_jpeg

NASA illustration.

evo_bio_424

Genetic Modification Through Astrobiology Provides Essential Benefits For Human Space Travelers
Evolutionary biology has provided advantages to meet the challenges of human travel into deep space.
The first generation of genetically modified humans was created to  limit the effects and risk from extended space travel. Microchip circuitry imbedded into tissue, gave humans expanded capabilities to assure space survivability, productivity, and flight operations. To combat muscle degradation from zero gravity-exposure, contractile protein levels were increased in muscle tissue.

.

Settlements On The Red Planet And Stages Of Terraforming
To survive solar radiation effects, early Mar’s settlers lived bellow the planet’s regolith (soil). Within less than a decade, the colonies developed their own localized magnetosphere, which became encapsulated environments within translucent domes — creating an atmospheric oasis. These aerodynamic structures offer shielding from dust storms and subzero temperatures. Now, an enriched quality of life on Mars includes ever-expanding domains of Earth like atmosphere for expanded development and life above the surface of the red planet.Meteor showers streaming above craters and cliffs during a Martian sunrise.
Meteor showers streaming above craters and cliffs during a Martian sunrise.

Mars Frontier series

Massive mirrors are fixed in orbit above Mars for reflecting warmth back onto its surface, to provide a more temperate climate. Reflected light directed at Martian polar ice caps and its Carbon dioxide atmosphere of CO2 helps to keep thermal energy near the planet’s surface. As a result, a thermal runaway greenhouse effect is created to help build a thicker atmosphere. Release of microorganisms on the red the planet dramatically accelerates production, for intensifying greenhouse gas expansion.
Directing small asteroids with rich concentrations of ammonia to impact nitrate beds on Mars, releases high volumes of oxygen and nitrogen. These highly controlled asteroid strikes are providing substantial positive results to help develop an enriched atmosphere.

French_man_Coule_BPP_aerp61

Nanotechnology is now employed on the surface of Mars and is dramatically altering landscape regions within various craters. Genetically modified plant forms are successfully taking hold and surviving some test environments. In conclusion, all of these achievements are creating a more Earth like climate, for efforts to terraform Mars.

.

Earth’s Sustainable Community On Mars
Self replicating machines using APM manufacturing allow infrastructure to develop at astonishing rates on the red planet. New scientific, engineering and mining communities are establishing themselves rapidly as they descend from orbiting stations and stationary platforms above the planet. The current population on Mars has surpassed 40,000 inhabitants and is projected to double within the next five-years.

Mars Frontier series

The form of governance adopted by the colonies on Mars is based on a nonpolitical and international form of cooperation.  Asteroid mining and APM manufacturing are the largest industries associated with the Mars colonies.

Mars Frontier series                

   .      

 Martian colonists celebration party for “Pioneer Days.” Martian sunset seen in the background, behind a massive protective atmospheric shield.

.

Fossil Bed Enigma Reveals We May Never Have Been Alone
Found only days ago in the Antoniadi Crater region, is evidence of a fossil and what appears to be human like footprints. Although this discovery may revolutionize our view of the red planet — we must wait for the samples to arrive on Earth to confirm what could be one of the greatest discoveries of all time.

Mars Frontier series

Discovery at a Martian archeological dig site — “we have never been alone.”

Mars Frontier series

.

.

.

.

.

.

Mars Frontier series

Perchance, the most fascinating evidence of preexisting intelligence of life on Mars, was discovered near the Antoniadi Crater. Enclosed within a geographic site is a source, which is emitting peculiar magnetic fields. Upon further analysis revealed, distinct patterns of what appears as a mysterious complex digital codex. After extensive review and evaluation using a network of 2020 Enigma Genisus Computing system interpreted it as audible, instrumental sounds accompanied by visual projections of humanoid syncopated movements.BoC video See Ya Later
Most perplexing is the referenced quantitative variables, suggest the site was or is a time capsule or possibly a time-portal. To see the reference audio and visual projection, click on the link below. https://www.youtube.com/watch?v=53bCaqz0zZA
Music soundtrack for the Martian Prophecies — Powered by Boards of Canada (you can open another web browser if you’d like to have the following music play while viewing this essay)
Solar System & Planetary travel, music  http://www.youtube.com/watch?v=3l_IMOweP0E
Martian pioneers’ celebratory music  http://www.youtube.com/watch?v=4jBzl–TN1Q   and or http://www.youtube.com/watch?v=PYEZueAelKc  
Music for terraforming Mars to   http://www.youtube.com/watch?v=qthHlLyvplg
A canopy of stars floats above the Monuments of Mars site, just as "Vesta 2"(support station) enters the view, reflecting solar light in its West-East orbital path.

Martian moonlight illuminates sculpted cliffs, as “Vesta II” (logistics platform) enters view —piercing the night sky with solar light reflecting off its West-East orbital path.

Facts Concerning Mars
One day on Mars = 24 hours 37 minutes and 22 seconds.
One year on Mars = 686.98 Earth days.
Average distance from Earth to Mars = 225 million kilometers.
The minimum distance from Earth to Mars = 54. million km.
The farthest distance from Earth to Mars = 401 million km.
Warmest temperature of Mars — 70 degrees F (20 degrees C) near the equator
Origin of the name Mars = Ancient Roman god of war and agricultural guardian
The calendar Month named after Mars = March
Links to Learn More About Mars
http://www.wired.com/wiredscience/2010/01/gallery-mars/
http://cbhd.org/content/whose-image-remaking-humanity-through-cybernetics-and-nanotechnology
http://www.jpl.nasa.gov/missions/
http://www.nasa.gov/vision/space/travelinginspace/future_propulsion.html
http://physicsworld.com/cws/article/news/2008/nov/06/magnetic-shield-could-protect-spacecraft
http://www.slate.com/blogs/quora/2013/09/12/outer_space_can_we_make_mars_or_venus_habitable.html
http://en.wikipedia.org/wiki/List_of_private_spaceflight_companies
http://www.forbes.com/sites/brucedorminey/2013/05/29/can-mars-be-terraformed-nasas-maven-mission-could-provide-answers/
http://en.wikipedia.org/wiki/Lagrangian_point
http://www.applieddefense.com/wp-content/uploads/2012/12/2001-Carrico-Sun-Mars_Libration_Points_And_Mars_Mission_Simulations.pdf
http://www.thespacereview.com/article/2305/1
http://blogs.discovermagazine.com/crux/2014/09/08/where-build-off-world-colonies/#.VGp-1BYexjk
http://www.nss.org/spacemovement/greason.html
http://web.mit.edu/sydneydo/Public/Mars%20One%20Feasibility%20Analysis%20IAC14.pdf
A list of over 400 essays on Mars http://www.123helpme.com/search.asp?text=mars

 

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

An Introduction Guide to Steampunk

2 Oct
Multimedia eLearning essay by: David Anthony Johanson  © All Rights
Steampunk is a wonderfully curious subculture — percolating with creative optimism, healthy playfulness — an inventive postmodern science fiction genre, which blends Victorian era, 19th Century alternative history with contemporary technology.
Goggles are a popular accessory for Steampunk practitioners.
Goggles are a popular accessory for Steampunk practitioners
A sub-genre of science fiction — Steampunk appears as if caught in some strange time warp. The practitioners of this loosely knit community of post-industrialist feature Victorian era clothing along with accessories such as goggles, intricate antique jewelry incorporating watch gears and a wide spectrum of retro-futuristic attachments.
Steampunk has remained under the radar of mainstream media, which is surprising since it’s one of the fastest growing cultural trends in recent memory! Now reaching the tipping point, this curious lifestyle movement is beginning to influence mainstream media, major retail and fashion labels.
Hand crafted, often one of a kind Steampunk jewelry is sold by vendors at the festival.
Hand crafted, often one of a kind Steampunk jewelry is sold by vendors at the festival.
Hand crafted, repurposed products, which uses wood, glass and metal (especially brass) are associated with the Steampunk movement. Manufactured plastic materials are rejected and viewed with contempt at Steampunk social gatherings.
Steampunk fashion or clothing is an eclectic mashup of Victorian era and Art Nouveau styles.

Steampunk fashion or clothing is an eclectic mashup of Victorian era and Art Nouveau styles.

Steam_punk_Fairhaven_BPP_2013_w 1

 

Steampunk Etymology   

Steam_punk_Fairhaven_BPP_2013_w 10
Although SP is a postmodern hybrid genre, Victorian era writers associated with its original inspiration are: H G Wells, Jules Verne and Mary Shelly. These 19th Century, vanguard novelist inspired future generations of science fiction writers, which throughout the 20th Century created new genres of their own.
Steampunk is not directly associated with the British Royal Monarchy of Queen Victoria (ruled from 1837 until 1901). The Victorian era is a convenient reference for what symbolizes the advancements made during the Industrial Revolution. Steam_punk_Fairhaven_BPP_2013_w 8
This era had the greatest technological developments of the 19th Century, including: massive agricultural output, wide distribution of railway systems, steam turbine engines (for world commerce and travel.), development and wide scale utilization of electrical power, telecommunications including ( telegraph, telephone and wireless radio) and the automobile’s internal combustion engine.
 Steam_punk_Fairhaven_BPP_2013_w 11
Regarding western social economics, the Victorian era sees for the first time, a middle class emerging, which establishes an expanding consumer based society. Trade unions are allowed to flourish, leading to greater protection for workers, including women and children. Human rights in general make huge advancements as slavery is eliminated in most of Europe and North America.
The actual term Steampunk derives from the science fiction genre — cyberpunk, which emerged in the early 1980s. In 1987, science fiction author K. W. Jeter, wrote a letter to science fiction magazine Locus, using the term, ‘steam-punks’, in describing an emerging science fiction genre inspired by Victorian fantasies.                    
Steampunk vendor shows off his hand crafted wares.
Steampunk vendor shows off his hand crafted wares.

Finding Steampunk Festival Events

When I first attended Western Washington University in Bellingham, I marveled at its charming neighborhood of Farhaven — a historic district with Victorian and Edwardian style brick architecture. A couple of summers ago I returned to Fairhaven in mid-July to sightsee. To my delight the first Fairhaven Steampunk Festival was in full swing and provided the photos used for this article.
Historic Fairhaven District has many fine examples of late 19th century architecture, including this multilevel wooden stairway
The Historic Fairhaven District has many fine examples of late 19th century architecture, including this multilevel wooden stairway
Beautifly proportioned brick buildings make for an ideal backdrop for a steampunk fesitival.
Beautifully proportioned brick buildings make for an ideal backdrop for a Steampunk festival.

Steam_punk_Fairhaven_BPP_2013_w 14

Steampunk Cinema & Television

A partial list of films which have Steampunk elements or themes
Metropolis – Fritz Lang Director (1927)
20,000 Leagues Under the Sea – Starring Kirk Douglas (1954)
Wild, Wild, West – CBS Television Series (1965-69)
City of Lost Children – Starring Ron Perlman (1995) 
Wild, Wild, West – Starring Will Smith, Kevin Kline & Salma Hayek (1999)
The league of Extraordinary Gentlemen – Starring Sean Connery (2003)
Steamboy – Japan’s most expensive animated film ever made, 10 year production (2004)
Golden Compass -Starring Nicole Kidman (2007 Film)
Sherlock Holmes 2: A Game Of Shadow – Starring Robert Downey Jr. (2011)

 

STEAMPUNK Personas

Scientist,
Aristrocat
Adventure
American Wild West
Steam Punk Film

To Learn More About Steampunk, Click On The Links Bellow

The Nine Novels That Defined Steampunk | The Steampunk Workshop

What is Steampunk? | Steampunk.com

HowStuffWorks “How Steampunk Works”

What is Steampunk? History and Culture that Define Steampunk

A History of Steampunk, Part 1 – Definitions | Jay Kristoff – Literary Giant

Steampunk – Wikipedia, the free encyclopedia

Why Defining Steampunk Is Worthwhile « Steampunk R&D

What Is Steampunk?

Steampunk Scholar: Defining Steampunk

Steampunk 101 | Tor.com

Get Ready for Mainstream Steampunk | 5 Reasons You’ll Be Talking About Steampunk in 2013 | TIME.com

Steampunk Magazine

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

 

 

How Did Rome’s Vitruvius, Become The World’s First Subject Matter Expert (SME) on Architecture?

2 Aug
An example of a variety of architectural styles influenced by Vitruvius. Florence, Tuscany Region, Italy. Photo by: David A. Johanson ©

An example of a variety of architectural styles influenced by Vitruvius. Florence, Tuscany Region, Italy. Photo by: David A. Johanson © All Rights Reserved

Multimedia eLearning essay by: David Anthony Johanson © All Rights

To see an alternative graphic view of this essay please visit: www.BigPictureOne.wordpress.com  

If you would like to experience some ancient Roman music while viewing this essay, open one more browser and click on the  Roman music link provided below (Synaulia III, has Latin signing and soothing melodies)

Architecture is the art which so disposes and adorns the edifices raised by man for whatsoever uses, that the sight of them contributes to his mental health, power and pleasure. Aphorism 4All architecture proposes an effect on the human mind, not merely a service to the human frame.  — From John Ruskin’s – The Seven Lamps of Architecture  ————————————————————————————————

 

The first historic footnote of Marcus Vitruvius Pollio, was not as an architect — but of his military engineering service for another overachiever,  Julius Caesar.

Vitruvius first job description involved being in charge of a Roman legion’s heavy artillery —the terrifying Ballista or catapult. Ironically, this future architectural genius was responsible for destroying opposing structures that came before his weapons of mass destruction. You could say, Vitruvius, literally had a major impact on architecture throughout the arc of his careers.

Rome_Soldier_BPP_eg100_0129

Vitruvius’ date of birth is recorded around 90 B.C. and apparently the recipient of a broad-minded education —

The floor plans from a Greek House - Vitruvius. Peterlewis - wikipedia project - image free to use with no copyright restriction

The floor plans from a Greek House – Vitruvius. Peterlewiswikipedia project – image free to use with no copyright restriction

science, mathematics, drawing, music, law, rhetoric and history. He is believed to have  apprenticed with a Greek architect, which gave Vitruvius the basic foundation and qualifications for becoming a subject matter expert (SME) on architectural principles.

Vitruvian Man by Leonardo de Vinci was named after & inspired by Vitruvius.   —This work is in the public domain in the United States, and those countries with a copyright term of life of the author plus 100 years or less.

Vitruvian Man by Leonardo de Vinci was named after & inspired by Vitruvius. —This work is in the public domain in the United States, and those countries with a copyright term of life of the author plus 100 years or less.

It’s speculated at the time Vitruvius began circulating his writing, wealthy Roman citizen’s private libraries were accessible to him for specialized study in architecture and engineering.

An upheaval caused by the Empire’s civil and foreign wars channeled Vitruvius’ professional direction towards engineering military machinery. It may have seemed like an irony to him that his skills were being used to destroy architecture, rather than create it.

Contrary to popular belief, the Romans liberally used color & brick instead of marble.  -Herculaneum, Campania Region, Italy.

Contrary to popular belief, the Romans liberally used color & brick instead of marble. -Herculaneum, Campania Region, Italy.

Hercu_laneum_BPP_g140

         

Julius Caesar's father-in-law residence - Villa of Papyri is located at Herculanieum, which was buried along with the city of Pompei, by the volcano Vesuvius, seen in the upper top frame.

Julius Caesar’s father-in-law residence – Villa of Papyri is located at Herculanieum, which was buried along with the neighboring city of Pompeii in 79 A.D., by the volcano Vesuvius, seen in the upper top frame.

                       .

.

OPPORTUNITY OPENS A DOOR FOR VITRUVIUS’ CAREER IN ARCHITECTURE

Following the assassination of Emperor Julius Caesar in 44 B.C., Vitruvius found employment with Caesar’s nephew and successor —Octavian. Another decade of Roman civil war and the eventual defeat of Marc Anthony and Cleopatra at the Battle of Actium in 31 B.C., led to a Pax Romana (Latin for “Roman peace.”)                                 Rome_Archt_BPP_et1113       

With Octavian as the undisputed ruler of the Empire, he was granted a new title — Augustus, the Emperor of Rome. Augustus channeled Rome’s wealth towards cultural, civic and public works development. This reinvestment for Rome’s glory, eventually gave Augustus bragging rights, as he is quoted, ‘I found Rome built of bricks; I leave her clothed in marble.’

An example of Roman ingenuity is in using brick for most of a building's construction, then a facade of marble or limestone is applied and finally followed by vibrant color applications.

An example of Roman ingenuity is in using brick for most of a building’s construction, then a facade of marble or limestone is applied and finally followed by vibrant color applications.

 

Augustus’ civic benevolence finally created an opportunity for Vitruvius’ great engineering and architectural contributions to move forward.

As the saying goes — behind every great man there is a great woman. It’s Augustus’ sister, Octavia, who sponsors Vitruvius to write the architectural treatise. Officially, the Books of Architecture are dedicated to Augustus, who uses them wisely to help create a marvelous metropolis.

The white outline of the architectural structure show where the colors were applied — from inside a residence at Herulaneum site, Italy.

The white outline of the architectural structure show where the colors were applied — from inside a residence at Herulaneum site, Italy.

Interior of residence in Herculaneum. Mosaics were used to bring the outside world indoors.

Interior of residence in Herculaneum. Mosaics were used to bring the outside world indoors.

Mosaic tile in the ancient port city of Ostia Antica, Lazio Region, Italy.

Mosaic tile in the ancient port city of Ostia Antica, Lazio Region, Italy.

Vitruvius, throughout his career keeps a low profile, perhaps due to observing what envy and jealousy could inflict on the Romans who attempted to shine too brightly.  

Statue in the ancient port city of Ostia Antica, next to the Tevere River, Italy.

Statue in the ancient port city of Ostia Antica, next to the Tevere River, Italy.

Cross section of Rome's Coliseum - The World's first 'super dome.'

Cross section of Rome’s Coliseum – The World’s first ‘super dome.’ This two-thousand year old stadium remains in use with major music concert & various public events.

.

.

.

.

.

.

PAST NONCONFORMING STANDARDS IN ARCHITECTURE THREATENS ROME’S RENOVATIONS 

In antiquity, Hellenistic Greek architecture sets the standards for beauty, quality and form. The Greeks, inspired by much older civilizations established around the Mediterranean, refined architecture to its classical ideal.  However, precious little had been written down regarding the styles and standards of Greek architecture, until Vitruvius ambitious efforts were realized.

Ruins at Ostia Antica, near Rome, Italy.

Ruins at Ostia Antica, near Rome, Italy.

As an effect from lack of architectural standards, instructional integrity of buildings could result in disastrous consequences, as well as the aesthetic value of religious, civic and private buildings.

Ionic style capital on top of column

Ionic style capital on top of column

Ancient Rome's Forum 3D, computer generated image  Image Created by: Lasha Tskhondia - Creative Commons Attribution-Share Alike 3.0 - Some Rights Reserved.

Ancient Rome’s Forum
3D, computer generated image
Image Created by: Lasha Tskhondia – Creative Commons Attribution-Share Alike 3.0 – Some Rights Reserved.

Vitruvius efforts of researching classic Greek architectural techniques and styles developed  into a comprehensive series of books on the methods and theories of architecture. These guiding books on style, function and practice,  served as a foundation for architects and engineers for over two thousand years and are still observed today.  

Rome Forum

Rome Forum

Cross section of Forum

Cross section of Forum

Remains of Rome's Forum

Remains of Rome’s Forum

How Did Rome’s Vitruvius, Become The World’s First Subject Matter Expert (SME) on Architecture? —More to be uploaded on Vitruvius in the coming days.

Links to learning more on Vitruvius

http://blogs.nd.edu/classicalarch/2012/09/28/many-canons-many-conversions/

http://en.wikipedia.org/wiki/Vitruvian_Man

http://www.bostonleadershipbuilders.com/vitruvius/

How about some ancient Roman music to enlighten your day? Click on the link below ↓

http://www.youtube.com/watch?v=X83IYWmcEFg&list=RD020MwBCorqBW0

——————————————————

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Is Space Law Really That Far Over Your Head?

29 May
Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  
 Part 1 of 2 Editions – To see an alternative graphic view of this story see: Space Law | bigpictureone                                                                 
Students and instructors are encouraged to use the visual cues imbedded within the text to quickly locate key information.
Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it has had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens. 
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing overtime through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new, dimensions as needed.
There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.
Back To Rocket Science Basics.
The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins attached near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. A German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass production. Used by the German military towards the end of World War II, the V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.   http://www.v2rocket.com/start/makeup/design.html
The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 83 to 93 km (52 to 60 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.
— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.
First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.

First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army

American scientists, James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army

Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©

What Goes Up, Must Come Down.
Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.
Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)
Because so many languages are involved with these international agreements, terms used in Space Law often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.
Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.

Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.

Cuba Gives A New Meaning To A Cash Cow.
Case Study:  In November of 1960, the second stage of a U.S. Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”
Dramatic Rocket Launch Failures Associated With Space Exploration.
It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures.
Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rush reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957. WA Okang SatDshBP_e1103
Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)
Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.
Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath.    Disaster at Xichang | History of Flight | Air & Space Magazine
Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and spaceports are geographically chosen to mitigate rocket launch accidents .   US rocket disasters – YouTube
Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.
VLS-3 rocket, launch  – August 2003, Alcantara (Brazil) – rocket exploded on launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.
Global location & GPS coordinates of major spaceports & launch sites. ??? - Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding "Space Law?" For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?

                                                                                                                                                             Global location, GPS coordinates of major spaceports & launch sites. Rocket launch debris fields indicated & Links to space port’s web sites included.  (CLICK ON MAP TO ENLARGE)   Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why 4.) which has the least advantage & why?

Location, Location, Location Benefits Rocket Launch Sites.
If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being threaten by a rocket launch, which could experience a catastrophic failure is why oceans are used as a safety barrier. Legal liability from a launch vehicle is a reason why all ships and aircraft are restricted from being anywhere near a rockets flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.
Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum.  An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.
Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.
The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?

Surprise space mission featured videos: Click → http://www.youtube.com/watch?v=rfVfRWv7igg →    Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law And Related Issues.

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063 

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exist today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~
Part 1 of 2 editions – please check back soon for the conclusion of this essay.
Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

 WA Okang SatDshBP_e1103

What Chance Will America’s Youth Have In A Changing Global Economy?

17 Apr
The first STEM EXPO Fair held at Edmonds School District's new STEM Magnet School at MountLake Terrace HS in Washington State. The student is caring a rocket, which was used in a group presentation at the fair.

The first STEM EXPO Fair held at Edmonds School District’s new STEM Magnet School at       MountLake Terrace HS in Washington State. This rocket club student is caring a rocket, which was used earlier in a group presentation at the fair.

Multimedia eLearning program by: David Anthony Johanson © All Rights

The author is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. For an alternative graphic view of this program, please visit: https://bigpictureone.wordpress.com/2013/04/19/what-chance-will-americas-youth-have-in-a-changing-global-economy/ 

 

A big question asked by concerned people and industry leaders across the Nation is waiting for an answer… How will current and future generations stay competitive in an increasingly, complex, global economy? A high-performance education program involving a blend of Science, Technology, Engineering and Mathematics (STEM) — is promising solutions as its building momentum within post-secondary and kindergarten-through-grade 12 (K-12) education. 

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.

The dynamic learning created from STEM’s project based curriculum is contagious for a growing number of students. And the program’s appeal is spreading to parents, schools and corporate sponsors who are looking for ways to get involved in supporting technology learning through public education. Even the U.S. Congress solidly supports the critical initiatives driving STEM Education, which is mostly funded through the National Science Foundation (NSF.)

STEM Robotics team in action with their project

Enthusiasm and excitement was experienced by those viewing students’ technology project presentations.

A Basic Overview Of A STEM Magnet Program

By the 21st century, digital technology had transformed global industry and commerce by accelerating STEM related industries. The skill-sets, training and knowledge of entry-level applicants was falling behind. Standards for learning, used in our public educational system, were now becoming outdated. Nationally, educators needed a new, comprehensive learning approach to inspire, explore and motivate students’ achievement in the global dynamics of STEM.

Today, the Nation’s public schools place greater emphasis on introducing STEM related content to both teachers and students starting as early as grade school. This program strategy allows all students of varied backgrounds, ethnicities and socio-economic levels to gain access to learning projects associated with science and technology.

By presenting young students with thoughtful STEM lesson plans, they are more likely to engage in the discovery process of even the most technical subject matters. Entering middle school, students are learning accelerated levels of science and technology content, which helps them decide if they wish to enroll in a high school, offering a focused curriculum. The STEM Magnet Program pulls in a diversified population of students, engaged and motivated by their earlier learning experiences.

STEM_Fair_ESD_BPP_aq_68

 Evolution And Development Of STEM Education

Richard Blais, Chairman of the technology department for the Shenendehowa Central School District in Upstate New York, developed a curriculum in 1986, to support students’ interest in studying engineering. To enable enthusiasm and confidence in students, core courses included; pre-engineering and digital electronics, infused with energetic and interactive learning environments. The curriculum’s proven a success, attracted philanthropist, Richard Liebich, who partnered with Blais to set up, Project Lead the Way (PLTW.) 

Greg Schwab - Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair

Greg Schwab – Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair

Dr. Nick Brossoit Superintendent, Edmonds School District

Dr. Nick Brossoit Superintendent, Edmonds School District

Within 10 years of PLTW’s founding, a dozen high schools in New York State adopted the program. Within the next few years high schools in 30 states were using PLTW’sPathway to Engineering Program.” Soon after, PLTW was a major national program, which used innovative activities of project and problem-based assignments. Further adding to PLTW’s momentum and success was the enthusiastic support corporations showed by endorsing and contributing financial resources towards the program.  

Mark Madison  Director, Career & Technical Education

Mark Madison
Director, Career & Technical Education for Edmonds SD

STEM Education incorporated many successful PLTW learning strategies and programs. PLTW is still active in high schools today and plays an active role in STEM Education.  

STEM EXPO Keynote Speaker - Dr. Elaine Scott Director of Science & Technology Program UW Bothell

STEM EXPO Keynote Speaker – Dr. Elaine Scott, Director of Science & Technology Program, UW Bothell 

Mark Sanders’, 2009 STEMmania article in The Technology Teacher, cites the STEM acronym first being used in the 1990’s. The National Science Foundation (NSF) started using “SMET” as a reference for “science, mathematics, engineering and technology.” A department, program officer complained “SMET” sounded similar to “smut,” so “STEM” became the suitable replacement. It would take more than a decade for the public to recognize STEM’s referenced meaning.  

The support  and enthusiasm for STEM Education is displayed by an impressive turnout for the District's first STEM EXPO Fair.

The support and enthusiasm for STEM Education is displayed by an impressive turnout for the District’s first STEM EXPO Fair.

STEM_Fair_ESD_BPP_77_1 STEM_Fair_ESD_BPP_74 STEM_Multi_Tshirt_-E101

The Challenge Of Integrative Education: Transcending Barriers And Perceived Domains Found Within Science, Technology, Engineering and Mathematic Education

Perhaps the greatest test for a STEM Magnet Program will involve achieving the goal, of course/subject integration. As a career, technical and education (CTE) instructor, I’ve heard this complaint more than any other from students — ‘why do I have to learn this subject, it doesn’t relate to other things I’m learning or anything I’ll ever need to know!?’ In truth, all subjects and courses taught in school share dynamic connections, we as educators need to do more in helping students see their associations.   

STEM_Fair_ESD_BPP_ae_24 Core sciences and engineering education have traditionally maintained strict disciplinary lines, known as silos. This shortsighted disconnect is generally not found in industry, where the imperative is to find solutions which will “payoff” in the shortest amount of time. Industry’s necessity to cut through process for realizing greater profits is an important lesson plan for all STEM Programs. The realized profit for a student is — being taught how to quickly adapt new, comprehensive and sometimes-unconventional learning strategies to gain a competitive advantage.  STEM_Fair_ESD_BPP_ae_18

STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.

The STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.

Benefits/Advantages For Both Students And The Schools They Attend

Developing a STEM magnet program helps a school district align its resources towards assisting students preparing for college and universities, which specialize in related technical studies. An additional advantage the program offers a student pursuing a post secondary education is — an institution will most likely accept the applicant’s enrollment request based on the knowledge and technical skills achieved through a STEM Magnet Program.   

                  

STEM_Fair_ESD_BPP_87   STEM_Fair_ESD_BPP_ac_23   U.S. industries have increasingly cited the lack of qualified technical applicants they need as a reason not to hire more employees. The shortage of people with necessary STEM skills has motivated corporations to contribute their resources of funding, mentoring and sponsorship towards public education’s technology learning programs.

STEM_Fair_ESD_BPP_ah_6  

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

 

STEM_Fair_ESD_BPP_ac_35

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

STEM_Fair_ESD_BPP_104

STEM_Fair_ESD_BPP_1

Parents and community groups have eagerly supported STEM programs. Student’s parents are critical stakeholders who quickly realized the impact the program was having  — seeing impressive scholastic and attitude improvements with their children.

STEM_Fair_ESD_BPP_ae_17

STEM_Fair_ESD_BPP_ac_1

STEM Education Uses Progressive Learning Strategies To Develop Critical Learning And Self-Discipline Within Students 

STEM_Fair_ESD_BPP_ad_7

STEM Education attempts to accelerate student development by modifying the standard teacher-centered classroom with more independent learning. The curriculum encourages project-based learning, problem solving and discovery, which empower the students to engage their cognitive skills to find solutions. This form of learning develops greater self-confidence in students and it opens channels among the students themselves to interact thru peer-to-peer learning. These spontaneous collaborative activities are self-organized learning events and they naturally promote leadership within the group. It has been well documented, knowledge transferred from experience in peer-to-peer activities are highly successful forms of learning.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.

STEM_Fair_ESD_BPP_ab_15

  STEM_Fair_ESD_BPP_am_39 STEM_Fair_ESD_BPP_ac_20

Tangible Returns In Personal Development Through Teamwork And Leadership

Over the past five years I’ve had the opportunity to teach in a variety of classroom environments using a CTE curriculum. It’s remarkable seeing how engaged students are with learning their STEM subject matter. These same students are much more likely to openly contribute and share their ideas in a classroom discussion using the critical thinking skills they’ve learned to develop.

Most often, STEM classes are more like being in a college environment, requiring a minimum amount of classroom management, as the students are self-motivated to complete their assignments and move on to the next project. Generally the level of leadership development and volunteerism is noticeably higher in STEM classes due to the program’s emphasis on teamwork, self-confidence and academic achievement. These personal development qualities are valuable assets for students applying for college admission and later — when entering the career of their choice.

Craig DeVine - pre-engineering instructor, talks with his students near a 3-D printer

Craig DeVine – pre-engineering instructor, talks with his students near a 3-D printer

STEM_Fair_ESD_BPP_a3  

STEM_Fair_ESD_BPP_ad_15

Improving Forecast For Employment Opportunities Using STEM Education

As STEM Magnet Schools continue to place their graduates into secondary education, followed by the students’ successful careers in STEM related industries — STEM Education will help transform the American education landscape. If STEM Education can sustain its momentum, the future horizon looks bright for our youth to achieve economic opportunities on a global leveled playing field.   STEM_Fair_ESD_BPP_91 STEM_Fair_ESD_BPP_1 STEM_Fair_ESD_BPP_ae_12_1

Entrance to Mountlake Terrace High School -Edmonds School District's first STEM Magnet School

Entrance to Mountlake Terrace High School -Edmonds School District’s first STEM Magnet School

.

. . . . . .. .STEM_Fair_ESD_BPP_ad_18 . . ……..

STEM Education Terms & Definitions

CTE = Career Technical Education NSF – National Science Foundation PD&I = pedagogy referring to – purposeful design and inquiry PLTW = Project Lead The Way STEM = Science, Technology, Engineering & Mathematics  STEM Magnet School = A school with a concentration of STEM classes, which attracts students throughout a school district interested in enrolling in a STEM Program   STEM_Fair_ESD_BPP_ae_5

STEM Education Links

http://www.stemedcoalition.org/ Home The Future of Education / The history of STEM education in America. Handy infographic! What is STEM Education? PLTW | OUR HISTORY PLTW | STEM Education Curriculum for Middle and High Schools http://esdstem.pbworks.com/f/TTT%2BSTEM%2BArticle_1.pdf Home PBS Teachers | STEM Education Resource Center nsf.gov – National Science Foundation – US National Science Foundation (NSF) Siemens STEM Academy – STEM Education Has Arrived… Start Small, But Dream Big http://www.stemeducation.com/ STEM Resources | Early STEM Program Still Going Strong – STEM Education (usnews.com) What STEM Is–and Why We Care – STEM Education (usnews.com) https://education.uky.edu/STEM/sites/education.uky.edu.STEM/files/SEM%20604_syllabus_%20History%20of%20STEM%20Ed.pdf Historical Perspectives on STEM Education in Arkansas | Arkansas STEM Coalition http://www.fas.org/sgp/crs/misc/R42642.pdf STEM ES Home – STEM ES FAQs NSTA :: News Story

Reflections From A Future Hawaii: Can A Tropical Paradise Become A Portal To Deep Space?

28 Feb

Honolulu, Hawaii 2054: Launch gateway to L4 & L5 space stations, Tranquility Moon Base and the Mars Frontier.

Honolulu, Hawaii 2054: Launch gateway to L4 & L5 space stations, L2 Lunar Hub and the Mars Frontier. Illuminated aircraft and monorail tubes bring early commuters into the City as twilight transitions to dawn. 

Multimedia essay by: David Johanson Vasquez © All  Rights

Waikiki, on Hawaii’s Island of Oahu is a Cross Roads of the World. The allure of this tropical city attracts millions of vacationing pilgrims from across the globe. Steady infusion of foreign and domestic investment creates a dynamic and often futuristic looking metropolis.

Digital display at the Galleria.

Digital display at the Galleria.

  On my last visit to Waikiki in November, I came across an ultramodern, duty-free, fashion and clothing store  located on its main boulevard. Entering this multiplex shopping site felt like being on the sci-fi movie sets for Spielberg’s Minority Report or  Ridely Scott’s Blade Runner. My son-in-law commented as he left the “Galleria” — “it was a sensory overload experience,” and headed back to the hotel to sleep it off. Hawa_Futr_BPP_121116_a38 . .

Portal entry to Waikiki's Galleria.

A hall portal entry to Waikiki’s Galleria.

Entering the Galleria is exciting and dynamic for those who are ready  for a hyper-sensory encounter while shopping for fashion and cosmetics products.

Honolulu’s Dynamic Style of Architecture

Honolulu encompasses Waikiki and has a rich, vibrant range of architectural styles, including its own unique “Hawaiian Architectural Style. Within Waikiki, the new architecture blends modern and Japanese style. 

Modern Hawaiian architectural style.

Modern Hawaiian architectural style.

Honolulu skyline with natural vegetation in foreground.

Honolulu skyline with natural vegetation in foreground.

From our condo balcony we could see a night panorama of Honolulu, which inspired  this essay’s theme of — a reflections from a future Hawaii. 

Waikiki_Pano_BPP_ewp_44

.      

Massive walls of electronic  projection frame the entry environment in Waikiki's Galleria.

Massive walls of electronic projection frame the entry environment in Waikiki’s Galleria.

The Sky Is No Longer The Limit For Digital Displays

Contemporary marketing and advertising have embraced electronics LED’s to capture our attention and stimulate our senses. We can expect the future will sustain sensory overload for the marketing of products, services and ideas on a global scale.     

 

Multimedia environments are more common in the 21st Century. As natural environments are increasingly altered or replaced by new ones, projections of “paradise lost” will attempt to fill an expanding void.

Honolulu skyline with natural vegetation in foreground.

Honolulu panorama

.

.

A Scenario For Things To Come

Advances in artificial intelligence [AI] and remote-control technology continues expanding its role in automating transportation industries. Seamless, point-A-to-point-B travel provided by auto pilot features in ground and air transportation standard— World travel  becomes even more assessable and affordable. 

A futuristic Boeing pilotless passenger jet with personal projection systems ( PPS).

A futuristic Boeing pilotless passenger jet with personal projection systems ( PPS).

Both Work and play  amenities can be extended to just about any  cabin environment for an enhanced travel experience.

i

South Point (Ka Lae) – Naalehu, Big Island, Hawaii +18° 54′ 39.96″, -155° 40′ 52.00″ “The Pan Pacific Launch Site” — Gateway To Lunar And Deep Space Exploration

↑As international space exploration matures, greater consortiums and partnerships develop between countries and corporations to create  space operations staging points near Earth’s orbit.

NASA Illustration of Lagrange Ponts of Earth-Sun System (not proportion to scale)

NASA Illustration of Lagrange Ponts of Earth-Sun System (not proportioned to scale)

The Lagrangian Points: of L2, L4 and L5 are  locations relatively close to Earth, which provide stable orbits for building hubs to assist in lunar, deep-space and asteroid exploratory missions. 

 

                   

Photo courtesy of NASA.

Photo courtesy of NASA.

The Big Island of Hawaii's South Point ( Ka Lae) is in the neighborhood of 1,400 miles from the  Equator,  which requires less fuel for launching rockets into orbit.

The Big Island of Hawaii’s South Point ( Ka Lae) is in the neighborhood of 1,400 miles from the Equator, which requires less fuel for launching rockets into orbit.  On the right, a SpaceX rocket has lifted off from the Pan Pacific Launch Site, on its journey to an international L2 Lunar Hub – Photo illustration: David Johanson Vasquez © 

Rocket view looking back towards Hawaii's Pan Pacific Launch Site.

Space view looking back towards Hawaii’s Pan Pacific Launch Site. Photo by: David Johanson Vasquez ©

Locations of previous NASA Apollo Manned landing sites. Photo illustration courtesy of NASA.

Locations of previous NASA Apollo Manned landing sites. Photo illustration courtesy of NASA.

Section view of International L2 Lunar Hub in stable platform orbit. Prime contracting consortium: Boeing, Mitsubishi HI, AviChina, Hindustan Aeronautics and ST Engineering.  — Photo illustration: David Johanson Vasquez ©

Section view of International L2 Lunar Hub in stable platform orbit. Prime contracting consortium: Boeing, Mitsubishi HI, AviChina, Hindustan Aeronautics and ST Engineering. — Photo illustration: David Johanson Vasquez ©

"Asteroid 1" - artist concept of asteroid mining mission to an Earth approaching asteroid.NASA sponsored a study on space manufacturing held at Ames Research Center (ARC) June1977, commissioned painting by - Denise Watt.

Asteroid 1″ – artist concept of asteroid mining mission to an Earth approaching asteroid.
NASA sponsored a study on space manufacturing held at Ames Research Center (ARC) June 1977, commissioned painting by – Denise Watt.

Digital post cards from the Martian Frontier.— Photo illustration: David Johanson Vasquez ©

Digital post cards from the Martian Frontier.
— Photo illustration: David Johanson Vasquez ©

Digital post cards from Mars - mining operations on the "Red Planet."  — Photo illustration: David Johanson Vasquez © All Rights.

Digital post cards from the Martian Frontier – mining operations during a “Red Planet”sunset. — Photo illustration: David Johanson Vasquez © All Rights.

Links & Resources:

http://www.hawaii.edu/news/article.php?aId=4926

University of Hawaii Manoa Small-Satellite Program Selected for NASA launch

.

http://www.universityofhawaiiinnovation.com/features/readying-for-liftoff/

University of Hawaii innovation article about UH College of Engineering Satellite Program –  by: Jolyn Okimoto Rosa

 

http://www.youtube.com/watch?v=dHdNSS85c5M

↑    ↑    ↑    ↑

Please view this window into the future, with a marvelous video of a low Earth orbit (LEO). Watch in full view mode, with the volume turned up.

.

.

[contact-form][contact-field </a></p> href="https://sciencetechtablet.files.wordpress.com/2013/02/futr_hawa_jet_bpp_121118_e28.jpg">label=’Name’ type="’name’" required="’1’"/] [contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Will the Last People Remaining In America, Turn the Lights Back On?

19 Dec

 

ScienceTechTablet provides periodic updates on solar activity . The essay begins below the lead photo .

Prepared jointly by the U.S. Dept. of Commerce, NOAA,

Space Weather Prediction Center and the U.S. Air Force.

Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30

Silhoute_man_ocean_BPP_1Eg227

Multimedia essay & images by: David Johanson Vasquez © All Rights Reserved

Part 1 & 2 of the series

To fully appreciate this story you’re encouraged to view two earlier multimedia essays on solar storms at: There’s nothing new under the Sun « Science Tech Tablet  Will the current solar storms hitting Earth, lead to lights-out for us all by 2013? « Science Tech Tablet  As a likely threat to ending our modern global civilization — a severe solar storm is unmatched as a natural disaster and yet it’s vastly underreported. An alternative graphic format of this essay is at: www.BigPictureOne.wordpress.com 

 

Now that we’ve moved beyond December 21, 2012 and you know, the Mayan prophecy wasn’t about the end of the world, there’s some truly sobering news about what really does threaten our civilization. A powerful, natural solar event, which affects everyone living today, is now reaching the peak of a violent cycle. Documented by history and science, this event threatens our civilization by destroying the essential technology we rely on and throwing us all back into the “dark ages.” The key to avoiding this global catastrophe is within our grasp — if  we and our National leaders are prepared to be aware of the problem and act by using the correct resources  for defending our National power grid.

A Shocking Glimpse of Things To Come…                                                               Aurora_Bor_BPP_il_0011

To understand what we’re up against, you only have to go back a short distance of time, to March 13, 1989A chain-reaction near the surface of the sun was triggered by a solar flare on March 9. Thousands of miles of magnetic arcs collided, causing violent high-energy explosions, which were instantly hurled into space. A plasma cloud from the event was observed heading directly towards earth at a million-miles per hour. As the sun’s radiation particle penetrated the Earth’s atmosphere, short-wave radio signals became disrupted, indicating our planet’s protective magnetic field was being overwhelmed.  And the brilliant, surreal light-shows from the“northern lights” heralded the solar storm to astonished viewers in Florida and even Cuba.

A cascading wave of technical glitches, involving electronic components suddenly occurred globally and beyond! The monitoring systems on the U.S. Space Shuttle were sending corrupt signals to mission controllers, while a host of satellites began malfunction and a Japanese satellite was damaged beyond repair.

At 2:44 a.m., after only 90 seconds of detection, the massive Hydro-Quebec power company was knocked offline by surging geomagnetic energy caused from the aggressive solar storm. Moments later, hundreds of utilities within the Eastern U.S. were suddenly blacking out. As a result of the blackout six-million people were now without power on a winter’s day. Within 40 minutes of the geomagnetic current’s detection — the force continued to build  like a Tsunami as it surged through the entire continental U.S. power grid, nearly collapsing all the Nation’s electric utilities in its path. The event’s speed and power led some to believe we were under attack from a Soviet nuclear electromagnetic pulse “EMP.”                 

Particle energy shock wave From solar storm is mostly defelcted by Earth's magnetic poles

Particle energy shock wave From solar storm is mostly deflected by Earth’s magnetic poles

Tech_abst_BPP__3ea1

 

 

 

Silhoute_Bldg_BBP_et204

 

The Achilles Heel of Our Technology.

Teams of scientist, engineers and physicist began piecing the 1989 events together and realized it was first, large scale, solar geomagnetic storm to hit during the postmodern digital electronic era. As powerful as the solar storm was in creating a rogue like wave of, geomagnetic induced current (GIC), which saturated the entire planet — it was only one-tenth the strength of the earlier 1921 “super solar storm.” Our electric infrastructure back in the 1920s was in its infancy and we didn’t have voltage sensitive microelectronics, which we now depend on to facilitate all our electronic devices. Today’s complex and overstretched power grids, with their high-power transmission lines are susceptible to geomagnetic energy created from solar storms.

The 1921 solar storm was what scientist classify as a one-in-hundred year storm. Many scientist from NOAA, NASA and the National Academy of Scientist (NAS) predicts a 10 to 12 percent probability of a super solar storm happening within the next 15 years and 100 percent likely beyond the referenced time  period.

The 2013 solar cycle is now entering its 11-year, peak phase known as solar maximum, this critical phase is of a grave concern as the sun begins to reverse polarity and creates the potential for a super solar storms. History reveals over centuries, a consistent pattern in the approximate 11 year solar cycle… put the pattern together and it may reveal how little time we have to prepare. Here’s a sample pattern from three of the largest storms in recent history:  1989 Hydro-Quebec geomagnetic storm, the 1921 super solar storm event arrived and the greatest of them all — the 1859 Carrington Solar Storm event all taking place within the 11-year solar maxim.   

Satellites, The Holly Grail of Telecommunications.

Photo courtesy of NASA

Photo courtesy of NASA

 

 

 

 

 

 

 

 

Solar storms and geomagnetic energy presents a spectrum of threats to satellite operations. Scientist, physicists and aerospace engineers have realized the challenges solar storms present to satellites since they were first launched into orbit.  The geomagnetic energy caused from mass solar energy interacting with the Earths magnetic field, can cause satellites to lose their orientation and if not corrected… can end their lives or even send them hurling towards Earth . Geomagnetic energy is similar to the static electrify you create when walking on a carpet and then is discharge by touching a grounded object. In satellites there’s no way to discharge the electricity, so it will continue to buildup energy and can fry the tightly packed circuits or damage one of the orientation gyros within it. Another problem created from a GIC is the magnetic energy it contains, which can erase the memory in your computer or any memory storage device. The list of essential industries and services that are threatened by CIGs, goes well beyond the banking and financial industries.

Telstar 1 Developed by Bell Labs and a consortium  of international enterprises

Telstar 1 Developed by Bell Labs and a consortium of international enterprises

Even though this subject is well know in the satellite  industry, it’s not a topic journalists will have much luck in finding someone to go on the record for in interviews. Satellite companies don’t like admitting the reasons for technical problems experienced with their products. The military is even less forthcoming with satellite information. It’s understandable why the armed services maintains a proprietary stance on its satellites, but commercial satellite companies could benefit themselves and the entire industry by sharing their experiences with solar storm related activity.

If you have cable television, you’ve probably noticed at some time, the satellite transmitting your program being disrupted by solar storm radiation. An indicator for solar interference is digital tiling, which momentarily appears like a frozen video frame, before breaking up into smaller digital tiles. The last few times I’ve noticed digital tiling on my television, I verified it was from solar interference by going to NOAA’s space weather site, which in fact, confirmed elevated solar storm activity was happening.

 

 

Was It My Question On Satellite Solar Vulnerability,  Which Brought An Abrupt End To An Interview With U.S. Senator Maria Cantwell?

Senator Cantwell  sharing her views on technology and education. Photo by: David Johanson Vasquez © All Rights Reserved.

Senator Maria Cantwell sharing her views on technology and education. Photo by: David Johanson Vasquez © All Rights Reserved.

This past July, I arranged a phone interview with Washington State, Senator Maria Cantwell.  Senator Cantwell serves on the U.S. Senate committee for Commerce, Science and Transportation, satellites are a topic this committee holds hearings on. Cantwell is also the committee Chairman on Energy, for the Senate’s Energy and Natural Resources committee, which deals directly with the Nation’s electric grid.

The interview began with Senator Cantwell and her advisor as they were traveling to an event. After I gave a brief intro to the interview topics, Cantwell was asked to share what updates the Senate had on hardening our satellite against solar storms — particularly in respect to the aging GPS satellites, which are now being replaced. There was silence for a moment,  it sounded like the Senator and her advisor had covered the phone for a discussion. Senator Cantwell said she would like to get back to me on that subject — I sensed in that moment, the satellite topic should have been brought up last, so I quickly changed gears and followed-up with — why the Senate was taking so long in approving a Bill that would help protect the National electric grid? Again, I didn’t get a direct answer and the Senator asked if we could finish the interview at another time.

Our latest technology in the  transmission of electric power uses GPS satellites to help regulate the flow of high voltage electricity through power lines. Also used in the control and monitoring of the electric power is shortwave radio and phone lines all of which can be seriously interrupted by severe GIC caused from a solar storm.

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms.  Photo: David Johanson Vasquez © All Rights

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms. Photo: David Johanson Vasquez © All Rights

As it turned out, the Senate later that month approved 84-11 to move forward with advancing the proposal for Cybersecurity Act of 2012, which includes protecting the electric grid. As an example of taking one step forward and then taking two steps back — the Senate voted down in August and again in November the Cybersecurity Act. Part of the reason for the Bill not being approved is because of a legislative tactic, which attached unrelated or conflicting objectives to the Bill, so that opposing side feels they can get more out of the negotiations. It’s seems startling in this era of politics, when the Congress or Senate is able to come together and quickly pass any new law without using this protracted tactic.                      

EWA FARM 108.2

It has to be noted, this was a phone interview, it wasn’t  face to face, it’s possible a more pressing matter came in while the interview was in progress. Also, the  Senator was in the final months of her  Senate election campaign and probably was advised not to comment on anything, which could be perceived as politically damaging.

The interview illustrates how challenging it is to help inform the public, along with government officials on what we all are facing from an impending 100-year solar storm event. I have contacts within the electric power industry, including the Bonneville Power Administration, which have been helpful in providing their own perspective on geomagnetic storms, but they’ve all asked to speak off the record. Unfortunately there’s too much pressure to play down the GIC issue from inside the power industry. It’s not pleasant realizing how poorly prepared we are for a potential natural disaster on this scale — that’s why I believe, “mainstream corporate media” has neglected informing on the consequences solar storms can have on society. In reality, there are  precautions which can be used to help protect the grid and society — but it requires courageous political leadership, which is almost as big as the problem its self.

SubS_BPP_70926_bt84

An Overstretched, Electric Power Grid Creates the Mother of All Antennas!

Government regulators, private and most public power companies have missed critical opportunities to invest in, strengthen and protect our electric power infrastructure from solar geomagnetic storms. Since the wake-up call of the 1989 Hydro-Quebec solar storm, our nation’s electrical grid has been overburden with higher demand and added thousands of high-voltage transmission lines. The vast network of power transmission lines stretching over the continent creates the mother of all antennas, by channeling geomagnetic energy into the electric grid. Like a lighting rod in a thunder-storm, the grid’s high-power transmission lines will channel the solar storms converted energy. The lack of investment and overuse of the grid makes it much more vulnerable than it ever was in 1989. An impending solar storm could produce the “perfect geomagnetic super storm,” which in a matter of minutes… decimates most of the nation’s ability to transmit power for several months or even years.

Recently there were comments in an open online physicist forum, regarding  threats from geomagnetic storms to the National grid. One thread mentioned a possible way to stop a serious GIC event from destroying high-voltage transformers, would be to physically cut the power lines to the transformers. Another physicist replied that the plan just might work, however he wasn’t sure anyone would be willing an attempt to physically interrupt the electricity collecting behind a continent of power lines.   IND MTS Clouds BPP_E116

OilWell_BPP__034

Underground pipelines and rail lines are also perfect conductors for channeling GIC’s electric current and have their own issues relating to damage from electro magnetic energy.

Envirn Indust_BPP e1007

In the 1989 Hydro-Quebec geomagnetic storm, there were only 90 seconds to make a decision on what action to take. Most likely, power utilities today are more prepared with an action plan — however deciding to shut down any section of the grid is an extreme responsibility for an individual. To give an example, last November I was in Honolulu, Hawaii, meeting with a friend who works for the Core of Army Engineers. She mentioned, earlier in the year on the Island of Oahu, a serious problem occurred with the transmission of electricity. A plant operator realized something was critically wrong and made the decision to disconnect the power, which caused large sections of the Island to lose electricity. The initial response from the public and local media was anger and criticism towards the operator, for shutting down the power without notification to thousands of people. It turned out the utility operator actually saved the system from being severely damaged by deciding to act quickly. In this event if the power was allowed to remain on, it could have caused severe system damage and  with repairs extremely expensive. So in reality the operator’s quick decision, and courageous action saved the day for thousands of customers.

Image courtesy of NASA.

Image courtesy of NASA

Deregulation of the Power Industry, Combined With No Centralized Authority over the National Grid In An Emergency  — Potentially Jeopardizes the Economy and Our Safety.  

Deregulation of the power industry has been an adopted policy  since the 1980s. It was supposed to encourage industry competition, for creating greater profits for the utilities, allow for steady improvements of infrastructure and lower cost for consumers. In reality deregulation has failed to deliver on its stated objectives.

Independent and comprehensive cost/benefit studies were not completed before deregulation was adopted. Joseph Swidler, former chair of the Federal Power Commission, stated in 1990 editorial of The Electricity Journal — While there is bitter disagreement over … changes, there can be little argument these are occurring haphazardly without the benefit of comprehensive analyses at a national level.” A specific example is the absence of an analysis of the decrease in benefits from coordination as mentioned above, since competition typically results in decreased coordination. [A. CasazzaAllan J. Schultz and Joseph C. Swidler A brave new world: Let’s look before we leap The Electricity Journal, 1990, vol. 3, issue 9, pages 40-43]                                             Money_int _BPP_a223

Engineering originally defined the qualifications and standards used for policy and management in the power industry.  After deregulation regulated the industry, marketing and finance became the policy and management standard.

Environmental stock photography for a New Dawn.

While the original standards used in the power industry were not perfect, it was more reliable and efficient than the current system — which has overstretched the National grid with higher capacity transmission lines and not sufficiently updated key infrastructure needs. Deregulation is what allowed for large-scale fraud and market manipulations to take place. This created unethical opportunities to gouge private consumers and large corporate customers by the former Enron Company in the early part of the 21st Century. 

The Issue of High Voltage Transformers.

According to industrial insurer’s publications, deregulation has forced the majority of power utilities to survive on a slim profit margin, which does not provide adequate reinvestment for infrastructure or necessary research and development. Many of the high voltage transformers still functions today are at the edge of their life expectancy. It typically takes three years to order, install and have a transformer ready for service. High voltage transformers are no longer manufactured in the U.S.. On average, these industrial transformers weigh 100 to 200 tons and are too large to be sent by aircraft. Ironically these transformers require massive amounts of energy to manufacture.     

A severe geomagnetic storm creates geomagnetic induced current (GIC), which transfers massive electric energy through the path of least resistance. This energy travels through water, earth and especially through metal such as underground pipes, rail line and electric power lines. The GIC saturates transformers, which distorts the voltage in the system and violently disrupts the entire process of transferring electric power. 

                                                                              SubSt_BPP0709_bt73             

As a critical component in the distribution of electric power, transformers have proven vulnerable to geomagnetic energy and their survivability is a major concern to engineers and scientist.  It’s likely a majority of the high voltage transformers would be at risk from the geomagnetic energy caused from a super solar storm. The transformers and the Nation’s electrical grid are more vulnerable on the East coast due to how overstretched the system is there. In the Western part of the U.S. the power utilities have been more proactive in protecting transformers and the grid is not as densely connected as it is in the East (at least in theory.) The further south in longitude a power grid’s location is a factor in lessening the effects of a geomagnetic storm. Also a location’s geology is a factor, some rock compositions conduct geomagnetic energy more efficiently than others.

According to leading engineering experts in the power industry, a practical strategy to protect the high voltage transformers is to install a surge protector like component on each transformer. The devices are about the size of a washer machine and would cost from $ 500 million to $ 1 billion dollars for the entire coverage. That’s probably the best value  of an insurance policy which would cover the Nation’s electrical grid, especially compared to the alternative of replacing  several hundred industrial size transformers.

http://www.lloyds.com/~/media/lloyds/reports/emerging%20risk%20reports/solar%20storm%20risk%20to%20the%20north%20american%20electric%20grid.pdf 

 

A Comprehensive Study, With Extensive Geomagnetic Storm Computer Modeling.

In 2010, The Oak Ridge National Laboratory produced an extensive report titled: Geomagnetic Storms and Their Impact on the U.S. Power Grid. The Metatech Corporation was contracted to produce extensive computer modeling on various solar and geomagnetic storm scenarios. The report has been presented to both the U.S. Senate and  House Congressional subcommittee hearings. Here’s a link to see for yourself how severe and extensive solar storm impact is likely to be using computer modeling.  

http://www.ornl.gov/sci/ees/etsd/pes/pubs/ferc_Meta-R-319.pdf

 

The Prospect of 400 Chernobyl’s

                                                                                                               400_chevnob_4E103

 

.

Russia’s Chernobyl and the United States’ Three Mile Island, are considered two of the greatest nuclear power plant disasters in history. Their legacy was clouds of lethal radiation, which caused mass evacuations and contaminated areas still not safe for people to inhabit. When these nuclear accidents occurred, there were no earthquakes, hurricanes or tornadoes to blame. The cause was a combination of technological failure and human error, which prevented the reactor’s cooling system to function, ultimately causing the nuclear disasters.

On March 11, 2011 the nuclear power plant in Fukushima, Japan  experienced a violent 9.0 earthquake, followed by a massive tsunami. This time it was a natural disaster which caused a failure of the reactor’s cooling system. The backup electric generators to the reactor’s cooling system also unexpectedly failed, causing the reactors to begin overheating. The reactor released a  substantial radioactive cloud, which forced a 20 mile radius evacuation.

There are federal disaster relief agencies, scientists and engineers questioning if a super  geomagnetic storm would burn out the backup generators for cooling a nuclear power plant’s reactor. Another question is, will the trucks used for hauling diesel to backup generators, even work after waves of geomagnetic energy travel through a vehicles microelectronics. Any type of car transportation or truck transport  will be extremely limited, if electricity is not generated to pumping gasoline and diesel from service stations.

In Hurricane Sandy and Katrina, a number of hospital’s critical backup generators failed to operate. It’s uncertain if backup generators will survive a severe geomagnetic disturbance from a solar storm. With over 400 nuclear power plants throughout the world, a serious geomagnetic storm, could potentially lead to loss of all electrical power to reactor core cooling systems, which would release radiation contamination on a global scale.

 

 

The Tragic Events of the RMS Titanic Serves As A Cautionary Analogy

Arctic_Ice_Field_BPP_6E54

This past April marked the 100 year anniversary of the “unsinkable” Titanic ocean liner’s maiden voyage. The once modern looking, massive ship was state of the art technology in 1912 — today it represents human arrogance and hubris towards over reliance on technology. The  captain of the Titanic,  Edward J. Smith, was quoted, of ‘not conceiving any disaster which could happen to his vessel’ — after all, no major passenger ship had been lost for nearly 50 years before the launch of the Titanic.

882 feet (269. meters) long -maximum breath 92 feet (28. meters) 46, 328 gross registered tons.

882 feet (269. meters) long maximum breath 92 feet (28. meters) 46, 328 gross registered tons.

White Star Line of Liverpool, England was the premier shipping company at the beginning of the 20th Century. White Star commissioned the construction of RMS Titanic – an Olympic class steam liner.  The passenger ship was outfitted with twin colossal, coal-fired reciprocating turbine steam engines, and the ship’s electric generator produces more power than an average city’s power-plants at that time. It also featured the latest wireless communication technology, capable of sending and receiving signals 1,000 miles away. Owned and operated by the Marconi Company, the radio room was operated 24/7 using two technicians. The radio’s functions were primarily for commercial passenger telegram services, but it also served an operations function for the Titanic as it received useful weather reports and ice warnings.

A functional, forced air heating system used electric fans to push warm air through a ventilation network. The Titanic could in an emergency, produce its own fresh water from seawater using a desalination process. Many new living improvements and conveniences on this marvelous, “floating city” employed advance technology created during the late industrial era.

RMS Titanic in its final stages of construction is being outfitted before sea-trials.

RMS Titanic in its final stages of construction is being outfitted before sea-trials.

220px-Titanic_cutaway_diagram

 

 

 

 

Full Speed Ahead Into the Night and Unseen Ice Fields

On April 14, 1912, three days into its maiden voyage the Titanic with its 1,317 passengers and 885 crew members moved swiftly across the North Atlantic. The ship averaged an efficient, 21 knots per hour (24 mph; 39 km/h) through the icy cold waters and was less than 1000 miles from its New York destination. As the streamliner approached the coast of Newfoundland, the skies were clearing over an unusually calm Atlantic Ocean. Throughout the day, Titanic’s radio operators received warnings from various ships in the route ahead of where they would soon enter — the captain responded by charting a 10 mile precautionary adjustment to the south for the ships heading. Throughout the day, warnings in Morse code reached Titanic’s radio operators in increase numbers and with more alarming urgency. The Captain assured the concerned operators — their ship had nothing to fear from icebergs and they should  attend to the passengers’ important communication needs. As the late afternoon melted into –,  Titanic was cruising at full-steam ahead and virtually blind in the calm featureless night.  

Comparison of Morse Code.

Comparison of Morse Code.

Two ship’s lookouts climbed the long later attached inside the steamship’s smoke stack to reach the crow’s nest for the last time. Unfortunately, the bridge’s binoculars were missing, so the men were forced to rely on their plain eyesight to see any impending danger. The Titanic cruised effortlessly through the flat calm ocean, creating a false sense of security to the crew and passengers — but with icebergs in the water, on a moonless night meant no splashing waves to help warn a watchful lookout. Just before midnight, Fred Fleet, the lookout  in the crow’s nest spotted the Titanic’ s dreadful rendezvous with destiny — a massive iceberg looming dead ahead. The bridge responded immediately by skillfully turning the ship away from the iceberg, the quick maneuver nearly was successful — but then… a horrible sound of solid ice scraping against sheets of steel plates and the profound, deep shutter delivered to the ship — telegraphed the Titanic was mortally wounded. Five watertight compartments were breached just below the waterline by the jagged ice, if just one-less compartment would have torn open, this story wouldn’t be told. The largest ship in the world, this floating world with its community of families, workers and wealthy aristocrats, now had less than three hours before the unthinkable end would happen.

IND MTS Clouds BPP_E20

The Captain and the Star Line management on board must have fallen into total shock and denial of what was happening to their Titanic, technological wonder. These individuals in charge with the responsibility for the ship’s operations and ultimately the passengers safety, were steeped in overconfidence, as they never conducted drills or consider necessary emergency contingencies and procedures. Fortified with hubris that the Titanic could withstand any act of nature, they lost sight of their most important duties of safe operations and procedures — after all, they believed in the myth their ship was built to be unsinkable.

In the same way the Titanic’s symbolizes a mythic system of indestructible technology, which can withstand anything nature can throw at — our civilization and specifically our Nation is repeating some of the basic errors regarding — an over reliance, complacency, and trust in life supporting technologies.  We’ve been so fortunate to have built a civilization, which harnessed electrical technology to run our industry, heat our homes and provide our security.  For decades, with few exceptions, we’ve had uninterrupted, reliable electric power that is now, taken for granted. Most of us have become shortsighted, with blind-faith in assuming we’ll have reliable electric power, whenever or wherever we need it.

Recorded history has demonstrated solar storms are a real threat to our technologies and civilization. Solar cycles,flares and storm events are a regular occurrence — a super geomagnetic storm will happen again, creating potential for catastrophic effects beyond any scale humanity has ever faced. Reliable, national and international scientific institutions and governmental agencies in charge of safety and security, increasingly  warn us of these real threats to the electric grid. 

Unlike RMS Titanic’s captain, whose hubris and over reliance on the technological engineering of his steam liner, lead to the tragic loss of his passengers and the world’s largest ship  — our elected officials and top power industry executives, need awareness of our technology’s fatal weakness and decisively act now to defend it! If our Nation, like the Titanic waits until the impending disaster is upon us to act… It will be too late — the  majority of our population, like those on the doomed infamous ship a 100-years ago will be scrambling for lifeboats that aren’t there. The millions of lives depending on electricity to transport food, medicine and provide security will have no safety-net for years to come. The threat from a natural continental or global catastrophic event is a known reality. It’s time for everyone to educate themselves and have an open dialogue with their families and communities regarding what precautions are necessary to minimize their effects. ~

Particle energy shock wave From solar storm is mostly defelcted by Earth's magnetic poles

Particle energy shock wave From solar storm is mostly deflected by Earth’s magnetic poles

 

 

 

 

 

 

 

 

 

Tech_abst_BPP__3ea1

 

A most beautiful video time-lapse of the Aurora Borealis – click →  http://vimeo.com/11407018

 

 

Government Agencies Which Are Warning Of Solar Storm Potential Dangers

Severe Solar Storms Could Disrupt Earth This Decade: NOAA

Scientists warn solar storms could be “global Hurricane Katrina” | Homeland Security News Wire

Testimony Given to  the U.S. Congress Regarding Threats to the National Grid from Solar Storms

http://www.solarstorms.org/CongressSW.html

SHIELDAct.com / Read H.R. 668 – The SHIELD Act

Testimony Given to the  U.S. Senate Regarding Threats to the National Grid From Solar Storms

http://www.ferc.gov/eventcalendar/Files/20110505082259-Testimony McClelland (5-3-11 Final).pdf

http://www.ferc.gov/eventcalendar/Files/20120717100957-7-17-12-FERC-Testimony.pdf

Who Is In the Lead For the Darwin Award Between the U.S. Senate or Congress

Here are some links for your review to inform your own decision on who deserves the Darwin Award.

Feds and Utilities battle over Solar EMP threat in 2014 | SpaceBattles.com

Senators debate security of electricity grid – Washington Times

Senate dumps strategy to prevent EMP damage | The Total Collapse

Murkowski Blocks Effort to Protect US Power Grid

 

 

 

What Can We As Citizens Do To Protect the National Grid

 

 

Sun_Drama_red_e3

 

 

 

 

.

.

 

.

Please check back to view the complete story — new content is being added daily, including an interview with Washington State Senator Maria Cantwell and comments from government agencies and electric power grid representatives.

.

Solar Storm  & Electrical Power Portal  [Editorial Links Government Links Industry links & Resources]

Solar Storms & Solar Weather

Space: NOAA Watch: NOAA’s All-Hazard Monitor: National Oceanic and Atmospheric Administration: U.S. Department of Commerce

NOAA / NWS Space Weather Prediction Center

Solar Storm Warning – NASA Science

SpaceWeather.com — News and information about meteor showers, solar flares, auroras, and near-Earth asteroids

Active Solar Regions – HAMwaves.com

Solar Satellites Research

Solar Shield–Protecting the North American Power Grid – NASA Science

Electric Power Industry Related to Solar Storm Issues

Disputes Dog Efforts to Protect Transmission Grid From ‘High-Impact, Low-Probability’ Threats – NYTimes.comEmergency Preparedness & Societal Concerns Related to Solar Storms & EMPs

Coming solar storm not likely to affect power grid – Technology & Science – CBC News

Are We Smart Enough to Survive … Or Will Humanity Win a Darwin Award? – Washington’s Blog

Editorial Articles, Media, Blog – Links & 

Not Ready for a ‘Solar Sandy’ – NYTimes.com

Guarding Against Solar Storms – NYTimes.com

Impacts of Severe Space Weather on the Electric Grid by the MITRE Corporation, 11-2011.

Lawrence E. Joseph: The Solar ‘Katrina’ Storm That Could Take Our Power Grid Out For Years

Scientist Concern, Massive solar flare storm may occur before warning system is complete | The Guardian Express

Solar storm sparks dazzling northern lights | World news | The Guardian

Solar Storm’s Auroras May Dance Above Mid-U.S. This Weekend | Wired Science | Wired.com

Solar storm incoming: Federal agencies provide inconsistent, confusing information – Capital Weather Gang – The Washington Post

The Latest Full Throttle Multimedia Video of Seattle From the R22 Beta Helicopter – Part 2 of 2

29 Nov

Multimedia video essay by: David Johanson Vasquez – © All Rights

BigPictureOne & ScienceTechTablet are dedicated sites for including excitement, experience & education in E-learning. For an alternative graphic format of this multimedia essay please visit: bigpictureone | Using photos, video & words to explore the Big Picture WordPress.com site

Have you ever traveled by helicopter and encountered a full-throttle-ride at a tree top-level? Part 2 of my Helicopter video series is now online for you to experience. There are valuable safety tips, aerial photo techniques, employment requirements for helicopter mechanics  as well as the ultimate joyriding aerial views of Boeing Field and Seattle!

Collaboration and Clear Communication

Clear communication and teamwork between helicopter pilots and flight mechanics is essential for aviation safety. Professional collaboration and working experience are also required between a pilot and photographer for ensuring successful photographic results. On the day of this video was shot our helicopter experienced technical issues, which needed repairs before completing the Port of Seattle’s aerial photo shoot. With solid communication between pilot and ground crews established, the repairs were completed as the fast and furious activity of aircraft went on all around us at one of the nation’s busiest international airports.

Video by: David Johanson –  © All Rights

Helicopter Rear Rotor Blades Can Be a Liability

A February 2007 Rotor & Wing Magazine article by Tim McAdams, used two tragic crash events involving helicopter aerial photography to illustrate potential hazards encountered from the helicopter’s rear rotor. In the article it reported, “the NTSB determined the probable cause as the pilot-in-command’s improper in-flight decision to maneuver at a low airspeed with a left quartering tailwind, which resulted in a loss of tail-rotor effectiveness.”  The investigation of these and similar crashes helped to create the FAA Advisory Circular AC90-9, that warns pilots of conditions which can cause loss of flight stability due to stress on rear rotors.

Under no circumstances should anyone including ground crews be near the helicopter’s rear rotor while the engine is on. The video shows why helicopter rotor blades are painted with bright patterns to warn of their potential danger.

Fast and Furious

Helicopter operations are virtually never boring and are the centers of major activity. See how the latest video in the series explores Seattle’s dynamic landscape, Boeing Field operations and helicopter safety.

 

REFERENCES: (Click on these sites to learn more on the subject)

Safety Around Helicopters

http://www.fs.fed.us/fire/av_safety/promotion/safety_alerts/IA%20SA%2011-03%20LTE%20Final.pdf

Rotor Hazards

Helicopter Hazards | Aeronautical Knowledge Handbook

Helicopter Landing Area Safety

Rotor & Wing Magazine :: Safety Watch: Loss of Tail Rotor Effectiveness

Tail rotor – Wikipedia, the free encyclopedia

The Kopp-Etchells Effect: Eerie Halo of a Helicopter’s Rotor Blades in a Dust Cloud – Neatorama

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0282087

The Spokesman-Review – Google News Archive Search

Robinson Helicopter Co.

Helicopters Northwest – Boeing Field

Intersting facts about the historic Smith Tower

HistoryLink.org- the Free Online Encyclopedia of Washington State History

Smith Tower – Wikipedia, the free encyclopedia

Walking Tours (Self-Guided) – Visiting Seattle – Seattle.gov

http://www.soundtransit.org/Documents/pdf/about/Chronology.pdf

Downtown (Central Business District) guide, moving to Seattle | StreetAdvisor

Columbia Helicopters

CH-47JA Helicopter | Helicopters | Kawasaki Heavy Industries, Ltd. Aerospace Company

Boeing CH-47 Chinook

Boeing: History — Products – Boeing CH-47 Chinook Rotorcraft

MD Helicopters MD 500 – Wikipedia, the free encyclopedia

Boeing: History — Products – Hughes OH-6 Cayuse/500 Military and Civilian Helicopter

Helicopter Safety | Flight Safety Foundation

http://drum.lib.umd.edu/bitstream/1903/1900/1/umi-umd-1880.pdf

King County International Airport/Boeing Field

Port of Seattle

 

A Full Throttle Multimedia Video of Seattle From the R22 Beta II helicopter – Part 1 of 2.

16 Oct
Multimedia essay by: David Johanson Vasquez  © All Rights 

The Robinson R22 helicopter is often described as a sports car version of helicopters — ultra light in weight, it takes off quickly and is so responsive it will literally make your head spin. Weighing in at only 1200 pounds fully fueled, it often feels like you’re wearing the helicopter like a “jet-pack” rather than riding in it. As a thrilling life experience, helicopter flights are at the top of the list, however, it requires the highest level of professionalism to safely fly and be involved with helicopter operations.

Videos by: David Johanson © All Rights

http://www.youtube.com/watch?v=JMVD3-P0fdM&feature=player_detailpage

 As a multimedia specialist who produces stories supported by photography and video content, I’ve used a variety of helicopters for an image capture platform. Everything from the compact , high – performance Huey 500D up to the  large tandem rotor  Kawasaki KV 107 (a licensed version of  the Boeing Vertol BV107 “Chinook” helicopter.) It’s the R22’s light weight, which  in my opinion, gives you the most thrill for getting from point A to point B.          

.

The Robinson R22 Beta II Helicopter was arranged for me to use as part of ◊ a six-month photography contract with the Port of Seattle. In between locations photographed for the Port, I shot video content for multimedia educational applications.

Multimedia Enhancements For Greater Learning 

This multimedia video includes graphic overlays, lower third titles and an integrated color key, which indicate: ΘSeattle historic architecture (Smith Tower)↔ municipal, transportation and industry infrastructure along with the  R22’s performance ratingsThe style of writing for this multimedia essay structures information using bold and italicized text  to optimize key content for quick scanning by readers. For accessing your recall and comprehension a quiz is included at the end of this essay. You’re also invited to explore provided web links related to the essay’s content  for learning more about subjects of interest. Your opinions and insights on how to enrich this multimedia experience is valued, so a comment section is included for suggestions and feedback.                                 

Advantages & Challenges For Image Capture from Helicopters     

The advantages of using a helicopter over an urban setting are many including: multiple low angle views, which are unavailable when using fixed winged aircraft, hovering over specific areas, an efficiency in reaching desired altitudes for a variety of perspective views.  

Ξ Aerial photography and especially video are challenging to produce in a helicopter compared with using fixed winged aircraft.  Two major issues, which can hamper imaging are: ↑ vibrations and noise caused from the engine next to the cab and rotor vibrations caused from elastic torsion deformations while flying. Aerospace companies such as Boeing and big budget feature film projects will occasionally use high-end aerial photography  companies, which have specialized cameras mounted into their aircraft. This specialization can reduce some aerial photography vibration issues associated with hand-held cameras, but it requires a large budget to justify the expense. The R22 helicopter is a very light craft and the summer afternoon, which was used to shoot these aerials, had strong turbulence, so some scenes will have some unavoidable vibration and noise in them. 

This is the first of two videos, which features aerial views of Seattle provided by  Helicopters Northwest out of Θ Boeing Field. The second video, soon to be posted, shows the return for refueling and includes initial mechanical issues getting the helicopter back in the air.  In regards to refueling, it’s critical a helicopter has been properly grounded before operations begin. Helicopter rotor blades are capable of generating large amounts of static electricity —especially in dry, dusty environments, which can pose a serious threat to both flight and ground crews.                

Outcomes From Infrequent Helicopter Accidents Are Usually Tragic… But There Are Exceptions

One of my first jobs after graduating from college was with KREM-TV (King Broadcasting) in Spokane. A few years after I moved on from working with the station a tragic accident occurred with its news helicopter. The helicopter had just picked up Gary Brown —an outstanding KREM videographer (who I remembered as always being upbeat, positive and friendly) — when its rotor blades struck the guy wires supporting the station’s transmitter tower. Both the photographer and pilot were killed instantly.

I’ve included a link below, which has an article with a photo of the accident scene from the Spokane, Spokesman Review – May 7, 1985 edition. The story has comments from a Federal Aviation Administration (FAA ) official coordinating the accident’s investigation. Ironically at the same page is a syndicated, New York Times story of a larger helicopter accident, which occurred on the following day of May 6. That tragedy was of the loss of 17 Marines in a large Sikorsky, CH-53 Sea Stallion off the southwestern coast of Japan. A joint operations helicopter reported witnessing the CH-53 suddenly lost power and dropped 500 feet into the sea. 

About ten years ago a friend of mine survived a helicopter crash, with only a few scratches. He had bought a used helicopter from a sheriff’s department to State his own flight service business. Over time, parts needed to be replaced with upgrades and he was sold a defective fuel-line, which was installed and failed while in flight. He was approximately 100 feet in the air with two clients when the helicopter’s engine shuttered to a stop. Fortunately he got his helicopter into ↑ auto rotation (emergency helicopter procedure, which shifts rotor blade’s pitch to use stored kinetic energy for making a “soft landing”) and as they began descending, the helicopter’s skid caught the center of a tree and its branches helped them slow the descent even more. 

Education and Training Is the Key to Helicopter Safety

Overall, if you consider how many hours and flights in a day helicopters perform flawlesslythey are safe and reliable. What these specialized aircraft can achieve in vertical maneuverability and performance is nothing short of marvelous and amazing. To ensure engines and structural frames are safely maintained the FAA certifies aviation mechanics using  two certifications. Helicopter mechanics are required to have: an airframe mechanic and or a power plant mechanic certification. Most employers prefer their mechanics having both certifications, which requires 1,900 hours of coursework in order to pass oral and written exams that prove their skills.           

Both videos demonstrate the essential level of professionalism required for helicopter operations during a high volume of jet and helicopters landings and takeoffs at Boeing Field.

Now, just sit back and enjoy the ride!       

     

 

.

.

QUESTIONS FOR CONTINUOUS LEARNING AND TO TEST YOUR RECALL?

1.) What are the advantages and disadvantages of using a helicopter for aerial photography?

2.) Name one of the first skyscrapers, which also was the tallest building on the West Coast until 1962?

3.) What is the most important overall requirement for flying helicopters?

4.) What is the name of the emergency procedure for when a helicopter’s engine fails inflight and what process takes place for a soft landing?

5.) Name the FAA requirements for being a helicopter mechanic and why are they necessary?

6.) Describe the multimedia enhancements on the video, which were used to promote greater learning.

Integrated Learning Color/Symbol Key for Career Technical Education:

Navy BlueAerospace Engineering related including: aerodynamics, structural dynamics & avionics

Ξ Dark Green — Multimedia & graphic design techniques used for Integrated learning

Θ Maroon — Historical structures, locations and or districts

◊ Indigo – Professional photography & video production

 Purple — Civil engineering related

 

REFERENCES: (Click on these sites to learn more on the subject)

The Kopp-Etchells Effect: Eerie Halo of a Helicopter’s Rotor Blades in a Dust Cloud – Neatorama

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0282087

The Spokesman-Review – Google News Archive Search

Robinson Helicopter Co.

Helicopters Northwest – Boeing Field

Intersting facts about the historic Smith Tower

HistoryLink.org- the Free Online Encyclopedia of Washington State History

Smith Tower – Wikipedia, the free encyclopedia

Walking Tours (Self-Guided) – Visiting Seattle – Seattle.gov

http://www.soundtransit.org/Documents/pdf/about/Chronology.pdf

Downtown (Central Business District) guide, moving to Seattle | StreetAdvisor

Columbia Helicopters

CH-47JA Helicopter | Helicopters | Kawasaki Heavy Industries, Ltd. Aerospace Company

Boeing CH-47 Chinook

Boeing: History — Products – Boeing CH-47 Chinook Rotorcraft

MD Helicopters MD 500 – Wikipedia, the free encyclopedia

Boeing: History — Products – Hughes OH-6 Cayuse/500 Military and Civilian Helicopter

Helicopter Safety | Flight Safety Foundation

http://drum.lib.umd.edu/bitstream/1903/1900/1/umi-umd-1880.pdf

King County International Airport/Boeing Field

Port of Seattle

 

 

  [contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Who Were the Titans of Telecommunication and Information Technology?

31 Aug

Multimedia Essay By: David Johanson Vasquez © All Rights – Second Addition – Series 1 & 2

— Inventions are rarely the result of just one individual’s work— but are created through collective efforts overtime,  from several individual’s observations, theories and experiments. Benjamin Franklin’s role in demystifying electricity, Michael Faraday’s discovery of “induced” current, Nikola Tesla and Guglielmo Marconi’s wireless radio communication… are just a few of the technology pioneers responsible for developing modern telecommunications. I regret not having the resources  for this essay’s inclusion of all men and women, whose’ discoveries made telecommunication and information technology possible.    

Definition of technology — “the systematic application of scientific or other organized knowledge to practical tasks.”  (J.K Galbraith)  “the application of scientific and other organized knowledge to practical tasks by… ordered systems that involve people and machines.” (John Naughton)

For an alternative graphic format on this program, please visit:  http://www.BigPictureOne.wordpress.com

Telecommunications took its first infant steps as the industrial revolution was rapidly compressing concepts of time and space. The first half of the 19Th Century witnessed modern societies using steam locomotive trains for mass transit and electronic communication through telegraph technology. Steamships shrunk the world by delivering capital goods, raw resources and people to remote locations within fractions of the time it took before. With the industrial revolution nearing its peak at the close of the century, a new communication, innovation was developed, which helped transform the modern age into a postmodern era. 

Inventor, Alexander Graham Bell’s Washington D.C. company, which developed the telephone, eventually evolved into a prime research laboratory. His vision for a R&D lab, created a foundation for the digital technologies of today. In the following century, another key, R&D technology titan— Xerox PARC  enters the stage, which helps to set in motion personal computing and expand the information technology revolution.

The steamship S.S. Empress of India near Vancouver B.C.
From the private collection of: David A. Johanson ©

Scottish born Alexander Graham Bell
from the collection of: Library of Congress

The French Technology Connection

A French, visionary government in 1880, recognized the importance of Alexander Bell’s invention, and awarded him the Volta Prize. A sum of 50,000 francs or roughly, $250,000 in today’s currency came with the honor. The funds were reinvested into research for use in education to enable knowledge on deafness. Growing investments to fund the creation of Bell Telephone Company on March 20, 1880 allowed for expanded research on recording and transmission of sound.

Can You Hear Me Now     telep_road_BPP_et110

The telegraph and telephone were the first forms of electricity, point-to-point telecommunications and qualify as early versions of social media platforms. Over time, phone service, convenience  and quality have steadily improved.  

In my youth during the early 1960s, I spent summers visiting relatives with farms in Wisconsin who had phones connected on “party lines” (several phone subscribers on one circuit).  When picking up a phone connected with a party line, your neighbor might be having a conversation in progress. If  a conversation was taking place  you could politely interrupt and request to use the phone for urgent business. Today, phone service has become so advanced that it is taken for granted as a form of personal utility. 

In 1925, Bell Telephone Laboratories were created from the merger of the engineering department of American Telephone & Telegraph (AT&T) and Western Electric Research Laboratories.  Ownership of the labs was shared evenly between the two companies; in return, Bell Laboratories provided design and technical support for Western Electric’s telephone infrastructure used by the Bell System. Bell Labs completed the symbiotic relationship for the phone companies by writing and maintaining a full-spectrum of technical manuals known as Bell System Practices (BSP).     

 

An Invisible Bridge From Point A To Point B

Bell Laboratories instantly began developing and demonstrating for the first time, telecommunication technology, which we now depend on for economic growth and to hold our social fabric together. Bell accomplished the first transmitting of a long-distance, 128-line television images from New York to Washington, D.C. in 1927. This remarkable event ushered in television broadcast, creating a new form of mass-multimedia. Now people could gather together in the comfort of their homes and witness… live news reports, hours of entertainment and product advertisements, which helped to stimulate consumer spending in a growing economy. Radio astronomy’s powerful space exploratory telescope, was developed through research conducted by Karl Jansky in 1931. During this decade, Bell lab’s George Paget Thomson was awarded the Nobel Prize in physics for his discovery of electron diffraction, which was a key factor for solid-state.

The Forecasting Power Of Numerical Data

An important component of renewable energy is the photovoltaic cell, which was developed in the lab during the 1940s by Russell Ohl. A majority of the United States’ statistician superstars, such as W. Edwards Deming, Harold F. Dodge, George Edwards, Paul Olmstead and Mary N. Torrey all came from Bell Labs Quality Assurance Department. W. Edwards Deming’s genius would later  go on to help revitalize Japan’s industry and be used in Ford Motors’ successful, quality control initiatives in the 1980s.

W. Edwards Deming

The U.S. government used Bell Labs for a series of consulting projects relating to highly technical initiatives and for the Apollo program. Several Nobel Prizes have been awarded to researches at the laboratory, adding to its fame and growing prestige. In the 1940’s many of the  Bell Labs were moved from New York City to nearby areas of New Jersey. ……………………………….Replica of the first transistor

Inventors of the transistor, l. to r. Dr. William Shockley, Dr. John Bardeen, Dr. Walter Brattain, ca. 1956
Courtesy Bell Laboratories

Smaller Is Better In The World Of Electronics

Perhaps Bell Laboratories most marvelous invention was the transistor invented on December 16, 1947. Transistors are at the heart of just about all electrical devices you’ll use today. These crucial artifacts transformed the electronics industry, by miniaturizing multiple electronic components used in an ever-expanding array of products and technical applications. Transistor efficiencies also greatly reduced the amount of heat in electronic devices, while improving overall reliability compared to fragile vacuum tube components. Once more, the labs’ select team of scientists was rewarded  with the Nobel Prize in Physics, for essential components of telecommunications.  

The mobile-phone was also created in 1947, with the labs’ commercial launch of Mobile Telephone Service (MTS) for use in automobiles. Some 20 years later, cell phone technology was developed at Bell and went on to become the ubiquitous form of communication it is today.                                                                                                            

 In 1954 the labs began to harness the sun’s potential, by creating the world’s first modern solar cell. The laser (Light Amplification by Stimulated Emission of Radiation) was dated in a 1958 Bell Lab, publication. The laser’s  growing spectrum of applications includes —  communications, medicine and consumer electronics.

A Perpetual Revolution In The Sky Unites The World

In 1962, Bell Labs pioneered satellite communications with the launch of  Telstar 1, the world’s first orbiting communication satellite. Telstar enabled virtually instant telephone calls to be bounced from coast to coast and all over the world. This development unified global communications and provided instant 24 – hour news coverage.      Bell Labs introduced the replacement of rotary dialing with touch-tone in 1963, this improvement vastly expanded telephone services with — 911 emergency response, voice mail and call service capabilities.

The image used in Byte Magazine for an article on VM2 assembly language. Photo-illustration by: David A. Johanson © All Rights

A New Distinct Language For Harnessing Machines

It’s been greatly underreported that Unix operating system, C  and C++ programing languages, essential for use in Information Technology (IT), were all created within Bell Labs. These crucial computer developments were established between 1969 -1972, while C++ came later in the early 1980s. C programing was a breakthrough as a streamlined and flexible form of computer coding, making it one of the most widely used in today’s programing languages. Unix enabled comprehensive networking of diverse computing systems, providing for the internet’s dynamic foundation. Increasingly, Bell Laboratories inventions were transforming and expanding the frontiers of micro-computing, which helped to make personal computing possible.                                                                         In 1980, Bell Labs tested the first single-chip 32-bit microprocessor, enabling personal computers to handle complex multimedia applications.

A major corporate restructure of AT&T, the parent company of Bell Laboratories, was ordered  by the U.S.  Federal government in 1985, to split-up its subsidiaries as part of a  divestiture agreementThis event proved to be an example of over regulation, which severed important links for funding technology R&D projects. Although AT&T previously had an economic advantage with a monopoly in the telephone industry, it allowed for necessary funding of Bell R&D labs.  Indirectly, U.S. tax payers made one of the best investments by subsidizing the foundation for our current telecommunication and information technology infrastructure.

AT&T Bell Laboratories became AT&T Labs official new name in 1996, when it  became part of Lucent Technologies. Since 1996, AT&T Labs have been awarded over 2000 patents and has introduced hundreds of new products. In 2007, Lucent Bell and  Alcatel Research merged into one organization under the name Bell Laboratories. Currently, the Labs’ purpose is directed away from scientific discovery and focussed on enhancing existing  technology, which is intended to yield higher financial returns.

.

Pause & Reflect: Questions for continuous learning part 1.

1.) What were the first forms of electrical, point-to-point telecommunications?

2.) What revolution was taking place when early forms of telecommunications were invented and name at least two technology innovations?

3.) Define the word technology?

5.) Who founded Bell Research and Development Labs?

7.) Name at least two developments which Bell Labs were awarded Nobel Prizes in?

6.) Pick one Bell Lab invention, which you believe was most important for helping develop modern telecommunications or personal computing.

Any Sufficiently Advanced Technology Will Appear As Magic.                                                     — Arthur C. Clarke

.

Advance Technology Takes Root In The West

In the first half of the 20TH Century, Bell Labs’ dazzling R&D creations aligned seamlessly to establish a solid foundation for telecommunications. Most of the Labs’ bold research had been conducted in the industrialized, Eastern portion of the United States. By the 1950s, new developments and evolving industries on the West Coast were benefiting from Bell’s technological inventions. Palo Alto’s, Stanford University research facilities, south of San Francisco, acted as a magnet for pulling in corporate transplants— most notably  IBM, General Electric and Eastman Kodak. In 1970, XEROX Corporation of Rochester, New York established a research center known as—Xerox PARC (Palo Alto Research Center Incorporated). PARC’s impact in R&D would soon be felt,  acting as a stimulating catalyst for personal computing and information technology development.  

 Creative Sanctuary For Nurturing Bold Ideas

Jack GoldmanChief Scientist at Xerox enlisted physicist Dr. George Pake, a specialist in nuclear magnetic resonance to help establish a new Xerox research center. Selecting the Palo Alto location gave the scientist greater independence and freedom than was possible near its Rochester headquarters. The location also provided huge resource opportunities for selecting talent pools of leading engineers and scientist from the numerous research centers located in the Bay Area. Once the West-Coast lab had a foothold, it became a sanctuary for the company’s creative misfitspassionate science engineers who were determined to create boldly. One of the few downsides for the new facility’s location was—less opportunities for lobbying and promoting critical breakthrough developments to top management located a continent away.

XEROX PARC had an inspiring creative influence, along with universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds.

Premier Unveils The Future Of Personal Computing Tools

XEROX PARC, discovered a target rich environment of ideas from  Douglas Engelbart, who worked at Stanford Research Institute (SRI) in Menlo Park. Engelbart gave the Mother of  all personal computing presentations in December of 1968, — astonishing the computer science audience with a remarkable debut of: the computer mouse, hyper text, email, video conferencing and much more.

Bitmap graphic, graphical user interface (GUI), which provides window like graphic features and icon objects — are just a few of the revolutionary concepts developed at PARC for personal computing. The list of  PC  innovations and developments continues with laser printers, WYSIWYG text editor, InterPress (prototype of Postscript) and Ethernet as a local-area computer network — inspiring PARC Universal Packet architecture, which resembles today’s internet. Optical disc technologies and  the LCD, were developed by PARC material scientist adding yet more to its diverse technology portfolio.  


The Shape Of Things To Come

 Xerox PARC’s R&D, efficiently blended these vital new technologies and leveraged it all into a personal computer, workstation, called  “Alto.” The futuristic Alto, was light-years ahead of its 1973 debut—bundled with a dynamic utility including: a mouse, graphical user interface and the connectivity of Ethernet. Interest in this revolutionary PC wonder kept expanding as countless demonstrations were given to the legions of intrigue individuals. The increasing demand for witnessing the power of PC computing was telegraphing the need for a new consumer market. For the first time, a “desktop sized computer” could match the capabilities of a full-service print shop.

Advance technology always comes with a hefty price tag, and the Alto was no exception, making it beyond reach of most consumers. Despite a high price-point — prestige and enthusiasm for Alto grew — as did admiration for the bold new world of Apple Computers and of its superstar founder — Steve Jobs.

Xerox Alto -1973 Was this the apple in Steve Job’s eye? It certainly was the first personal computer, which included most of the graphic interface features we recognize today.

Torch Of The Titans Lights New Horizons

By 1979, Apple was beginning to advance its own user-friendly interfaces with the development of the Lisa and Macintosh personal computers. Both products featured screens with multiple fonts, using bitmap screens for blending graphics and text. There were Apple graphics engineers  associated with Xerox PARC — either through former employment or in connection with Stanford University. Apple engineers aware of advances made in graphic interfaces with PARC’s ALTO, prompted Steve Jobs to have a parlay with PARC. In late 1979, Steve Jobs with his Apple engineering entourage arrived to view an AlTO demonstration at Xerox’s facilities. The  meeting’s outcome proved Jobs’ was a master of showmanship and marketing JudeJitsu by not disclosing a previously negotiated, sizable investment from Xerox’s venture capital group

Gravitational forces began shifting in favor of Steve Jobs and Apple Computer to capitalize on the market potential for personal computing. PARC computer engineers and scientist clearly understood the economic potential of an information business they help  build… but Xerox top executives certainly did not.  Xerox had a history of dominating the lucrative copy machine market — it was the business model corporate decision makers were comfortable with and they would not risk venturing very far from.  Most of PARC’s personal computing developments experienced the same frustrating fate of withering on the vine —  allowing for lucrative opportunities to go for bargain rates to new companies like Apple Computers.

Apple’s alchemy of — perfect timing, creative talent and visionary insight quickly aligned towards harnessing information technology products for an emerging market convergence. The creative inspiration and marketing savvy, which Steve Jobs’ applied towards personal computing—created  seismic ripple effects, which we’re still experiencing today.

Nothing Ventured, Nothing Gained  

Recently, there’s been a handful of media and tech industry critics, siting undeserved shortcomings of Bell Labs and Xerox PARC.  Too often, corporate R&D labs are faulted for not fully marketing their technology developments or capitalizing on scientific inventions. Rarely mentioned is the research & development lab’s purpose or mission of innovation, which is directed by the parent company’s strategic goals. Failing to understand the reality of this relationship, detracts from the technological importance and diminishes the accomplishments of these remarkable engineers and scientists. Lost in the critics hindsight, is the titanic obstacles facing the marketing, manufacturing and distribution of innovative products.  

Thrilling technical breakthroughs are what grab headlines — rarely are the successful efforts of corporate marketing or brilliant production logistics recognized or mentioned. It’s a disconnect to judge a R&D’ lab’s success completely  on the financial returns of its inventions.

The laser printer’s success, in particular, should erase the myth that Xerox PARC miss-managed all of its developments. Gary Starkweather, a brilliant optical engineer for Xerox PARC, developed the laser printer. Starkweather had pitched battles with Xerox management over promoting the laser printer, but eventually he triumphed and the laser printer went on to earn billions of dollars — enough to repay the investment cost of Xerox PARC several times over. Eventually Starkweather sensibly moved on to greater opportunities when Steve Jobs offered him a job in Cupertino. 

Brilliant R&D technology, requires an equally creative or open-minded group of executives for  converting technology innovation into a marketable product.  These decision makers must maintain iron-wills and courage to shepherd the technology product through its entire volatile development process. IBM’s iconic 305 RAMAC, the first commercial ‘super computer,’  is a classic example of a product development challenge. Introduced in 1956, the RAMAC featured a hard disk drive (HDD) and stored a — whopping five megabytes of data. Apparently, the HDD storage capacity could’ve been expanded well beyond the 5MB, but was not attempted because — IBM’s marketing department didn’t believe they could sell a computer with more storage.                    

IBM 305 RAMAC — first commercial computer to use a hard disk drive in 1956.

R&D Labs take creative risk in developing new ideas, most of these developments won’t make it to market, but that’s the price of creativity. Using intuition for taking risks and knowing some failure is necessary to pave the road toward successful discoveries — builds confidence in trusting one’s creative resources. So often, the creative-process is misunderstood and undervalued in our society’s perceived need for instant control and results. In the past, I’ve personally witnessed this attitude reflected in our educational system, however the viewpoint is  progressively shifting to realize the value of the creative-process.

Steve Jobs and Apple Computers are a good illustration of a company, which traditionally emphasized and embraced the creative spirit. Creative employees are considered the most valued resource at Apple as they are encouraged to nurture their creative uniqueness. Shortsighted emphasis on quarterly results, which has affected most of American business culture, is refreshingly absent from Apple’s overall mindset, allowing for more sustained and successful business initiatives.

Where Have All The R&D Labs Gone — Innovation VS Invention

The era of industrial, ‘closed inventive’ research & development labs — have faded into the background of yesterday’s business culture. Internal silos, once the proprietary norm, have been day-lighted to allow fresh ideas and collaborative efforts to circulate.  For the past 10 years, corporations have steadily reversed their long-term, pure scientific research in favor of  efforts towards quicker commercial returns. In 2011, Intel Corporation, dropped its  ’boutique’ research lablets‘ in Seattle, Berkeley and Pittsburgh  — opting for academic research to be conducted at university facilities. Intel continues to maintain its more profit oriented Intel Labs. This industry strategy repeatedly cloned itself within the corporate research world, as it is far easier to realize a profit from innovation than it is from pure invention.

Perhaps the golden-age of great research & development labs have run their course — but not before replacing the analogue, industrial era technology, with a digital one. A century ago, using creative, innovative and bold scientific vision, Bell Labs set the standard for future R&D labs. Xerox PARC, helped to extend Bell Labs’ marvelous inventions and innovations with a solid platform of creative research for developing mass markets in the postmodern telecommunications and personal computing of today.  ~

Pause & Reflect: Questions for continuous learning – part 2.

1.) Name the parent company (based in Rochester New York) and its research and development lab, which moved into California’s Bay Area in 1970?

2.) What was the  product (used for duplicating documents), which this New York based company had made its fame and fortune on?

3.) Give at least two reasons why this R&D lab was so inventive?

4.) What stop the lab’s parent company, which developed the first commercialized personal computer from realizing more profits from its inventions?

5.) What was the name of both the young, iconic tech entrepreneur and his company (named after  a red fruit) who was able to creatively use and market early Silicone Valley PC innovations?

6.) What’s the difference between invention and innovation?

7.) In your opinion, who were the top 10 inventors of all time and how did they make your top 10?

.

References

wp- CREATIVE COMMUNITIES v5.indd
Bell Labs – Wikipedia, the free encyclopedia
Bell Labs
Telstar 1: The Little Satellite That Created the Modern World 50 Years Ago | Wired Science | Wired.com
Was Bell Labs Overrated? – Forbes
Top 10 Greatest Inventors in History | Top 10 Lists | TopTenz.net
History of Lucent Technologies Inc. – FundingUniverse
Volatile and Decentralized: The death of Intel Labs and what it means for industrial research
Inventive America | World | Times Crest
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
http://www.westernelectric.com/history/WEandBellSystemBook.pdf
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
HistoryLink.org- the Free Online Encyclopedia of Washington State History
Xerox PARC, Apple, and the Creation of the Mouse : The New Yorker
1956 Hard Disk Drive – Disk Storage Unit for 305 RAMAC Computer
IBM 305 RAMAC: The Grandaddy of Modern Hard Drives
WSJ mangles history to argue government didn’t launch the Internet | Ars Technica
The Industrial Revolution: A Timeline
A History of Silicon Valley
The Tinkerings of Robert Noyce

XEROX PARC had an inspiring creative influence, along with a brilliant universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds

Blinded By Light, In The Middle Of Night

16 Aug
Multimedia essay by: David Johanson Vasquez © All Rights  — Second Edition
For an alternative formatted view of this essay, please visit — http://www.BigPictureOne.wordpress.com

My photo wingman, Rick Wong and I headed into the heart of darkness in quest of the Perseid meteor showers. Mount Rainier National Park—was our ultimate destination. We chose the iconic, volcanic landmark for framing an infinite field of stars, which we believed was far from the glare of city lights. Traveling at night in Rick’s new Ford Fusion, using the hybrid’s voice recognition, made it easy to arrive at the park without using a map. Reaching our destination, luminous sparkling stars lit up the still night, but we were surprised with some uninvited competition, which nearly stole the show.

A stunning view of Mount Rainier reflected in Reflection Lake, with the summer stars overhead. The pink and orange glow on the left side of the mountain is light pollution emitted from the City of Tacoma, approximately 65 miles northwest.

 

We found an ideal location above Reflection lake, with the Cascade Mountains’ most famous stratovolcano in the background. An unexpected warm light was glowing behind Mount Rainier, which I reasoned, was a faint remnant from the earlier sunset. However,  the sun had set at least four hours earlier, so it couldn’t be the source of the illumination. Rick suggested “its light coming from the City of Tacoma,” located about 65 miles away. During a 20-second long exposures used to take images of the snow-capped mountain, I began thinking about the effects caused by light pollution.  

With a bright moon rising, we worked fast to keep up with the changing light, until its intensity eventually overpowered the stars.

With the moon steadily rising behind us, it too was causing us to shift focus on what to photograph. Like a giant diffuse reflector, the moon projected soft filtered sunlight onto a previously dark, formless landscape. As the moonlight overwhelmed the intensity of the starlight, it removed the opportunity for crystal clear views of the Milky Way, as well as faint meteor sightings. Being photo opportunist, we used the moonlight opportunity to reveal shadow-detail  on the south face of Rainier.    

The photographer appears in the dark, like some sorcerer conjuring an intense red light before Mount Rainier and her crown of stars above.

A Peaceful Paradise Lost

There’s a tranquil feeling while in the process of taking long exposures at night; it’s normally quiet with minimal distractions to overwhelm the senses or interrupt your focus. I personally enjoy these rare opportunities of solitude, to visualize an image using a minimal—Zen like perspective.

Distractions can be disruptive during these in-the-now-moments, as when cars coming around corners with intense, high-beam headlights.  More than once, clusters of cars with high beam lights appeared… just as the moon illuminated the mountain’s reflection onto a perfectly still lake. I quickly used my hands, in an attempt to shield the lens from light flare. Finally, the cars diapered into the darkness with no approaching vehicles until dawn.

Photo-illustration of the multiple effects of light sources which can cause light pollution by unintended distraction or spill-light.

Moving above the lake to find new angles for interesting compositions, I began to notice something, which I had not noticed before.  Lights of various colors, were coming from photographers bellow me, created by their digital camera’s preview monitors and infrared sensors for auto focusing. With the low light-sensitive Nikon cameras I was using, their monitor lights appeared like a bright flare in my long exposure photos. Now, I had one more unwelcome light source to deal with, which required strategic timing in making exposures to avoid the glare. 

Again, my thoughts returned to the issues of light pollution. I remembered back home when I wanted to photograph a full-moon  at night and a neighbor’s floodlight lit up the backyard. Their floodlight forced me to find the last remaining isolated shadowed corner of the yard.

My reminiscing was cut short by a distant, but bright, pinpoint of light flashing from bellow Mount Rainier’s summit.  Flashlights from mountain climbers near Camp Muir shined bright like lighthouse beacons in the semi-darkened rocks and glacier fields. Even the faintest light can shine bright at night as documented in World War II. Warships were forbidden from having any exterior lights on at night, including a lit cigarette, otherwise they could be spotted from great distances by enemy submarines.  

Lights from mountain climbers on the approach to the summit of Mount Ranier.

Encountering the Universe’s Brilliance

The improper, overuse of outdoor lighting has erased a fundamental and connecting human experience—encountering the universe’s brilliance with its galaxies and stars shining in the night sky! Making a visual contact with our own galaxy, the Milky Way, is one of the greatest shows seen from Earth.

In less than a century of civilization’s reliance on electric technology: two-thirds of the U.S., half of Europe and a fifth of people in the world—now live where they cannot see the Milky Way with the unaided eye. You can appreciate how we lost our stellar view by seeing aerial photos taken from orbiting spacecraft and the International Space Station. These startling images taken of Earth at night, reveals a man-made galaxy of artificial light, which cancels out much of the real ones in the sky above.  

Some years back, I was a part-owner in a small recreational ranch, in Eastern Washington’s, Okanogan County. Brining friends over from Seattle, it was often nighttime when we arrived. The instant of exiting the cars, was a startling event as the Milky Way’s intensity of light overwhelmed your senses. The “ranch” was remotely located, at about 5,000 feet in the mountains, near the Canadian border and 30-miles from the closest town. Days would go by where we didn’t see a car or even hear a small airplane go overhead… it was one of the most refreshing experiences of my life, to perceive nothing except wind going through trees and seeing only starlight at night for hours at a time.

Image courtesy of NASA

 A television interview with the director of a major observatory in Southern California recounted when Los Angeles had its last electrical blackout —people were calling 911 and his observatory, reporting of strange, bright objects in the night sky. Actually what the callers were seeing for the first time, was the natural light from intensely shining stars of the Milky Way.

Image courtesy of NASA.

 

Besides forfeiting a life inspiring, wondrous view of the cosmos, there’s tangible losses associated with light pollution. Conservative estimates are 30 % of U.S. outdoor lighting is pointed skyward in the wrong direction, which wastes billions of dollars of electricity. The unnecessary practice of lighting clouds, burns more than 6 million tons of coal, which adds harmful greenhouse gas emissions, along with toxic chemicals into our atmosphere and water.

Further scientific studies indicate wildlife is suffering the ill effects of excessive urban lighting.  The City of Chicago has taken measures to turn off or dim its high-rise lighting to enable migrating birds to continue normal migration patterns. An increase in species of insects attracted to light, along with rodent attraction to bright city lighting is a growing concern to many scientists. 

Heavy equipment product shots never look quite this good. Scheduled improvements to the viewing area above Reflection Lake, had some equipment taking a nap, before going to work when the sun came up.

Education Is the Solution to Light Pollution

The reason light pollution has continued to multiply is, we have grown accustomed to its seemingly benign expanding presence. After all, probably no one can point to a single case of a person killed from overexposure to light pollution?  However, there is a correlation to growing health risk associated with overexposure to artificial light in the form of physical fatigue and damage to eyesight. In 2009, the American Medical Association established a policy, which supports the control of light pollution.

Municipal lighting codes are beginning to help define and eliminate unnecessary light pollution. Lighting enforcement can create a more pleasing environment, by reducing excessive urban lighting, which causes fatigue from glare and cuts down on unnecessary electric utility cost. Redirecting outdoor lighting away from the sky where it is needlessly wasted is a simple and easy solution.

Installing motion detector security lights are another efficient and productive mitigation strategy. For security purpose, a light which is triggered by motion is much more effective for crime prevention than a continuous floodlight. Motion detector lights have a clear advantage of focussing our attention onto an area where there’s a sudden change from darkness to bright-light.

The Milky Way is what we should be able to see at night if it was not for unrestricted light-pollution. You can see the Andromeda Galaxy in the right 1/3 of the frame. Nikon D700 – Nikkor 28mm lens @ F3.5 @ 20 seconds August 11 11:48 p.m.

The encouraging news is… the key to reducing light pollution is a simple matter of basic education and action. Public awareness of over-lighting requires a minimal expenditure, which will quickly pay for itself in energy savings and perhaps return the opportunity to experience one of the greatest shows seen from earth. ~

Light pollution glossary:

Urban Sky glow: the brightening of night skies over municipal and communities. Caused primarily from collective reflected light and poorly directed light, which is pointed upward.

Light trespass: light falling or spilling into areas where it is not intended. Also know as “spill light” such municipal streetlights, which go beyond indented illumination of street signs and sidewalks and lighting residential homes.

Glare: A direct, bright or harsh light, which causes discomfort or pain. The effects of glare can be reduced or eliminated with the use of a shield or filter.

Uplight: Light angled inappropriately upward towards the sky and serving no purpose. Uplift washes out the night sky and reduces opportunities for astronomers and stargazers to enjoy the beauty of the planets, moon and stars.

Clutter: Poorly planned, confusing and unpleasant use of multiple lights usually associated with urban or retail lighting. Retail business sometime competes by using overly bright, multicolored or pulsating light

Links to articles & related resources on light pollution:

 http://www.darksky.org/assets/documents/is001.pdf

http://www.njaa.org/light.html

http://www.skymaps.com/articles/n0109.html

http://en.wikipedia.org/wiki/Light_pollution

http://ngm.nationalgeographic.com/geopedia/Light_Pollution

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

There’s Nothing New Under the Sun, or is There?

19 Jul

Science Tech Tablet provides periodic updates on solar activity, the essay begins after the Space Weather Prediction Center Report

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 Jul 19 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 200 Issued at 2200Z on 19 Jul 2013

IA.  Analysis of Solar Active Regions and Activity from 18/2100Z to
19/2100Z: Solar activity has been at very low levels for the past 24
hours. There are currently 7 numbered sunspot regions on the disk.

IB.  Solar Activity Forecast: Solar activity is likely to be low with a
slight chance for an M-class flare on days one, two, and three (20 Jul,
21 Jul, 22 Jul).

IIA.  Geophysical Activity Summary 18/2100Z to 19/2100Z: The geomagnetic
field has been at quiet to unsettled levels for the past 24 hours. Solar
wind speed, as measured by the ACE spacecraft, reached a peak speed of
674 km/s at 19/1650Z. Total IMF reached 12 nT at 18/2100Z. The maximum
southward component of Bz reached -9 nT at 19/0122Z. Electrons greater
than 2 MeV at geosynchronous orbit reached a peak level of 2710 pfu.

IIB.  Geophysical Activity Forecast: The geomagnetic field is expected
to be at unsettled to minor storm levels on day one (20 Jul), unsettled
to active levels on day two (21 Jul) and quiet to unsettled levels on
day three (22 Jul).

III.  Event probabilities 20 Jul-22 Jul
Class M    15/15/15
Class X    01/01/01
Proton     01/01/01
PCAF       green

IV.  Penticton 10.7 cm Flux
Observed           19 Jul 114
Predicted   20 Jul-22 Jul 115/115/115
90 Day Mean        19 Jul 121

V.  Geomagnetic A Indices
Observed Afr/Ap 18 Jul  016/015
Estimated Afr/Ap 19 Jul  011/014
Predicted Afr/Ap 20 Jul-22 Jul  014/020-011/015-008/010

VI.  Geomagnetic Activity Probabilities 20 Jul-22 Jul
A.  Middle Latitudes
Active                35/30/25
Minor Storm           20/10/05
Major-severe storm    05/01/01
B.  High Latitudes
Active                10/15/15
Minor Storm           25/30/30
Major-severe storm    50/40/30


 A multimedia eLearning essay by: David Johanson Vasquez © All Rights — First Addition

 Please note: This essay is a follow-up from my chronicle on solar storm effects of the 1859 Carrington Event on an industrial era society— forward to the postmodern, microelectronic world of today. To better understand the context of this article, it’s suggested you view my introduction solar storm essay found  by selecting the March 2012 archives found on left side of this page.  The National Academy of  Sciences (NAS) (funded by the U.S. Congress) produced a landmark report in 2008 entitled “Severe Space Weather Events— Societal Impacts.” It reported how people of the 21st-century depend on advance-technology systems for daily living, The National Academy of Science stated— Electric power grids, GPS navigation, air travel, financial services and emergency radio communications can all be knocked out by intense solar activity.  A century-class solar storm, the Academy warned, could cause twenty times more economic damage than Hurricane Katrina. [1] Some leading solar researchers believe we are now due for a century-class storm.                                

Photo courtesy of NASA

You’re encouraged to help make the essay interactive by entering comments or observations in the dialogue box at the end of the essay.
The essay is a work in progress, please check back as more content will be added
in the coming days.  — To see this essay in another format, please visit the site: http://www.BigPictureOne.wordpress.com
July 15, 2012 aurora borealis sighting near Everett, WA. This event was caused from an X-class solar storm, which occurred within a week of another X-class storm (X-class being the most severe classification). The 11-year solar cycle is approaching a solar maximum around 2013, this will most likely bring more intense solar storm activity.

.

Depending on your interpretation of the essay’s title, there is nothing new under the sun when it comes to our neighboring star’s behavior. Since our Sun left its infancy as a protostar over 4 billion years ago, by triggering a nuclear fusion reaction and entering a main-sequence stage, its solar mechanics have maintained relative consistent patterns. What has not remained the same is the evolution of life on Earth, in particular, our species’ development of a civilization which now is dependent on a form of energy called electricity. Our Sun is now playing a version of solar roulette with the World’s social and economic future.

The name “aurora borealis” was given by Galileo Galilei, in 1619 A.D., inspired from the Roman goddess of dawn, Aurora, and Boreas from the Greek name for north wind. First record siting was in 2600 B.C. in China. Collision between oxygen particles in Earth’s atmosphere with charged (ionized) particles released from the sun creates green and yellow luminous colors beginning at altitudes of 50 miles (80 kilometers). Blue or purplish-red is produced from nitrogen particles. The solar particles are attracted by the Earth’s northern and southern magnetic poles with curtains of light stretching east to west.

.

Reaching back only a few generations into the 20th Century, electricity was considered a luxury—today ordinary life would be impossible without it! And that’s where our beloved Sun comes into the picture, to potentially cast a shadow on our dependency of electricity. Solar storms have been a reoccurring event before time began, but they didn’t affect people outside of providing a fantastic, special effects light-show  until a critical event happened in 1859.  

In the mid 19th century, while the industrial revolution was near full development, the resource of electric power was first harnessed. Shortly after electricity was put into use for communication using telegraph technology (a 19th century equivalent of the Internet), is when the Sun revealed                                                                                                     a  shocking surprise in the most powerful solar storm ever recorded, which was known a the Carrington Event.

The year 1859 was near a peak in the Sun’s 11-year solar cycle, when the Sun’s polarity readies for reversal. Approaching  the end  sequence of this magnetic shift, brings a solar maximum , which produces violent solar flares and ejects plasma clouds outwards into space. If the flare occurs in a region opposite of Earth, a Coronal Mass Ejection (CME) may send a billion-ton radiation storm towards our planet. Fortunately, the Earth is protected by a robust atmosphere and a magnetic field surrounding the globe, which protects us from most  solar winds. However, an intense solar storm with its charged plasma cloud  can overwhelm our planet’s protective shields. When an extreme solar storm’s magnetic energy counteracts with our planet’s protective magnet field, it creates geomagnetic induced currents (GICs). GICs are massive amounts of electromagnetic energy which travel through the ground and ocean water, seeking the path of  least resistance in power lines, pipe lines and rail tracks. 

In the 1859, Carrington event, the GICs surged through the world’s emerging global communication system,known as the telegraph. So much power was generated from the solar storm entering the Earth’s atmosphere, it sent massive currents through telegraph wires, catching offices on fire, nearly electrocuting operators and  mysteriously continued sending signals with batteries completely  disconnected.     

A visual indication of the Earth’s magnetic field being overwhelmed occurs when the aurora borealis appears. If the cosmic-light-show can be seen near the tropics, it’s an indicator our planet’s magnetic fields are severely being overrun. In the extreme solar storm of 1859, the aurora borealis was seen near the equator and it was reported  people were able to read newspapers outdoors at midnight. Navigational compasses (19th century version of GPS)  throughout the world spun-out-of-control due to the flux of electromagnetic energy.

                                                                                                                                                                                                                                     
A more recent, dramatic example of a solar storm’s impact is the 1989, Quebec-Power blackout. The geomagnetic storm created was much milder than the solar maxim of the 1859, Carrington Event. However, it’s a chilling preview of what a complex, unprotected  electrical grid faces when up against the forces of super solar storm. Quebec-Power’s large transformers were fried by the GICs overloading its grid network. Electrical grids and power-lines  act like a giant antennas in pulling in the  massive flow of geomagnetic energy. In the 1989 solar storm incident, over 6 million people lost power in Eastern Canada and the U.S., with additional connecting power grids on the verge of collapsing.  Again, the powerful 1989 solar disturbance was not the 100 year super storm, but a small preview of what can if  preparations are made to protect the power grid.
`
Solar scientist are now able to put together how extreme storms follow an 11 year solar maxim cycle, like the one we’re now entering, and should peak sometime in 2013. Already this year, six major X-class solar storms, the most intense type, have occurred since January. Within one week of July, we had two of the X-class storms, with last one pointing directly at Earth. On July 13, 2012, the Washington Post’s Jason Sometime, wrote an article with his concerns on how NASA and NOAA were sending out inconsistent warnings about the solar storm from July 12.

A spectrum of telecommunication may be lost during severe solar and geomagnetic storms. Photo: David Johanson Vasquez © All Rights

`
The federal agency FEMA, appears to have learned its’ lesson from Hurricane Katrina and being proactive with a series of super solar storm scenarios. These  scenarios  illustrate the many challenges towards maintaining communication and electric power, based on the strength of the solar event. Without reliable power, food distribution will be problematic. Today we have less reliance on large warehouse  inventories and more dependenancy on — “just in time” food delivery. According to Willis Risk Solutions (industrial underwriter insurer for electric utilities) and Lloyds World Specialist Insurer (formerly LLoyds of London), there’s a global shortage of industrial large electric transformer, which now are only made in a few countries. It would take years to replace the majority of the World’s electric transformers and technically require massive amounts of electric power, which ironically, would not be available in an event of an extreme geomagnetic storm.  http://www.lloyds.com/News-and-Insight/News-and-Features/360-News/Emerging-Risk-360/Transformers-a-risk-to-keeping-the-power-on-230810
`
The companies and  the federal agencies mentioned in this essay, are overall, considered highly respected and cautious in forecasting major threats to societies and national economies. All of the mentioned government entities and scientific organizations realize it’s not a matter  if, but when will the next super solar storm be aimed and sent to Earth.
`
The good news is we can still take the necessary precautions to protect our society and economic future form this clear and present threat. Here’s a link to the 2008 National Academy of Science (funded by congress) report:  Severe Weather—Understanding Societal and Economic Impact: A Workshop Report (2008). This group meets every year to work on preventative strategies. The report contains cost-effective protection plans for electric power grids, please see link provided.        http://books.nap.edu/catalog.php?record_id=12507 
.
Second Addition: More to be added in the days ahead including…
— Update on U.S. House of Representatives and Senate sponsored  legislation for solar and geomagnetic storm preparedness.
— Electric power industry mitigation and preparedness for solar and geomagnetic storm preparedness.
`
`

Chronicles of the largest solar and geomagnetic storms in the last 500 years.

1847  — First geomagnetic storm caused by solar flare inadvertently documented with telegraph technology.  Reports were the telegraph system was sending clearer signals by disconnecting its batteries and using the geomagnetic energy from the storm.  First published affects caused from geomagnetic storm.

1859  — Becomes known as the “Carrington Event;” telegraph system becomes inoperable worldwide as reports of offices are set on fire from supercharged telegraph wire. This is the largest geomagnetic storm in 500 years. Scientist impressed with the event begin documenting future solar storm activity. The destructive power from a storm of this magnitude would devastate global power grids, satellites, computer and communication systems.

1921 — Know as the “Great Storm,” it impacted  worldwide telegraph and radio signals with total blackouts  and cables were burned beyond use. This scale of geomagnetic storm is likely to occur approximately once every 100 years.  As we approach a century mark since this type of storm took place — it’s possible another one could happen at anytime, with devastating results unless preventative measures are taken.

1989 —  Major solar flare erupts on surface of the Sun opposite of Earth; a resulting solar storm trigers a massive geomagnetic storm, which overwhelms Quebec’s power grid. As a result of the storm, six million people instantly loses power as U.S. Northeast and Midwest connecting grids come within seconds of collapse. As a result, Canadian government becomes proactive and takes effort to protect its power grid from future solar storms.

2003 — Know as the “Halloween Storms” this series of geomagnetic storms disrupted GPS, blocked High Frequency (HF) radio and triggered emergency procedures a various nuclear power plants. In Scandinavia and South Africa, section of  power grids were hit hard, many large power transformers were destroyed by the powerful geomagnetic induced currents (GICs).

Chronological  Reports and News Accounts of Solar Storms From 1859 to 2003

This is one of the most comprehensive  list of solar storm accounts on the web. The site chronicles strange solar storm happenings; such as reports in the early 1960s  with TV programs suddenly disappearing and reappearing in other regions. Other unsettling reports include the U.S. being cutoff from radio communication from the rest of the world during a geomagnetic storm. Please see link below:

http://www.solarstorms.org/SRefStorms.html

.
.

Solar Storm Acronyms and Terms

ACE — Advance Compositional Explore = NASA satellite used in detecting and monitoring potential damaging solar flares and CMEs.

AC — alternating current

BPS — bulk power system 

CME — coronal mass ejection = caused from a solar fare near the surface of the sun, which sends  a billion-ton radiation storm out into space.

EHV — extra high voltage

FERC — United States Federal Energy Regulatory Commission

GIC — geo-magnetic induced current = an extreme solar storm’s magnetic energy counteracts with our planet’s protective magnet field, creating electric current which conducts or travels through the ground or ocean water.

GMD — geo-magnetic disturbance

GAO — Government Accounting Office

GPS — global positioning system = A series of satellites positioned in an Earth, geostationary orbit for use in military and civilian navigation

NERC — North American Electric Reliability Corporation

NASA — National Aeronautics and Space Administration

NOAA — National Oceanic and Atmospheric Adminestration

POES — Polar Operational Environmental Satellite

SEP — solar energetic particle

SOHO — Solar and Heliospheric Observatory (satellite)

STDC — Solar Terrestrial Dispatch Center (Canada)

STEREO — Solar Terrestrial Relations Observatory (Satellite)

..

Sources and Links

.

NASA Resources
Illustration courtesy of NASA
A useful illustration for understanding NASA’s efforts with Heliophysics System Observatory
Detail explanation of space weather and NASA monitoring can be found at the following link:   http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html
NOAA Solar storm monitor sites:
NOAA is the nation’s official source of space weather alerts, monitoring and alerts. The following NOAA site provides realtime monitoring and forecasting of solar and geophysical events.  http://www.swpc.noaa.gov/
http://www.n3kl.org/sun/status.html

Washington Post story on conflicting NASA and NOAA solar forecast warnings for the July 12, 2012 solar storm event.
 http://www.washingtonpost.com/blogs/capital-weather-gang/post/solar-storm-incoming-federal-agencies-provide-inconsistent-confusing-information/2012/07/13/gJQAkm06hW_blog.html

NASA and NOAA sites (post warning of impending dangers to the electrical grid from solar storms producing extreme geomagnetic induce currents (GICs) on Earth). http://science.nasa.gov/science-news/science-at-nasa/2009/21jan_severespaceweather/ http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/ http://www.noaawatch.gov/themes/space.php

http://www.guardian.co.uk/science/2012/mar/18/solar-storm-flare-disruption-technology

http://www.wired.com/wiredscience/2012/07/solar-flare-cme-aurora/

http://www.usfa.fema.gov/fireservice/subjects/emr-isac/infograms/ig2012/4-12.shtm#3

My solar storm articles from February www.bigpictureone.wordpress.com  and in the March addition of  www.ScienceTechTablet.wordpress.com  present a comprehensive picture of how solar flares and solar storms originate, with the potential of producing geomagnetic storms on Earth.  If these geomagnetic storms are severe enough, they can threaten our way of life. Some strategies and common sense precautions are offered  for civic preparedness in the case of an extreme solar event.

 

`

Is there a greater champion for keeping America viable as the World leader in technology and science, than Senator Maria Cantwell?

6 Jun

Late 1990’s photo-illustration to promote Real Audio and its affiliates. At that time: RA Vice President of Marketing , Maria Cantwell hired my multimedia services to create this futuristic, virtual reality view of Seattle.

Photos and essay by: David Johanson Vasquez © All Rights   Second—  Addition

The U.S. is in a must-win race, to continue as the clear leader of global competitiveness  in technology and science. No other stakes are higher or ensure greater returns for our nation’s security, economic health and cultural way-of-life.

Photo courtesy of NASA.

Senator Maria Cantwell of Washington State has a proven record of properly managing the resources of public and private sector technology.  Global leadership requires well-informed oversight, which can fully employ, the most recent developments of  science and technology.  Ms. Cantwell’s earlier career as a successful executive in an emerging media technology company, gave her exceptional tech industry qualifications. A functional knowledge of computer engineering provided her a proactive view of emerging, 21st-century Information Technology (IT).  The Senator serves on five Senate Committees; perhaps the most critical for the nation’s position in world leadership is the Commerce, Science & Transportation Committee.

Washington State is fertile ground for producing world leading, innovative technology companies.  Software development, Internet commerce, biotechnology and aerospace industries are the primary economic engines of the Pacific Northwest.  It’s fortunate for the State of Washington and the Nation, to have a representative who clearly recognizes the economic and technical potential of these dynamic industries.

Electricity, is, the lifeblood, which our current technologies rely on.  Electrical energy is not a luxury; it’s a necessity for our way-of-life, which society society takes for granted.  Vigilance from our national leaders is essential for protecting our crucial resources from natural and manmade disasters.

Cantwell’s first major accomplishment as a U.S. Senator began taking shape within the first days of being in office; by her focussing a national spotlight on deceptive energy market manipulations.  In December 2001, Enron—a onetime energy giant— filed for Chapter 11 bankruptcy, while laying-off thousands of its employees.  Enron had taken extreme advantage of deregulation within the energy industry.  Without legislative oversight the company was on a rampage of manipulating energy markets, while overcharging businesses and households millions of dollars.

In the 2005 Energy Bill, Senator Cantwell helped author provisions, which made it a federal crime to manipulate electricity or natural gas markets.  Cantwell also helped uncover evidence, which proved, ongoing deceptive schemes were used by Enron traders to target customers. With the energy company’s blatant deception made public, Senator Cantwell successfully stopped the bankruptcy court from forcing customers  in Washington State, to pay millions of dollars in “termination fees” for electricity which hadn’t been delivered.

Boeing 747 at Everett manufacturing facilities.

Affordable, reliable electricity was and remains today the essential resource, which allows dynamic industries to thrive in the Pacific Northwest.  Boeing aerospace, is a prime example, which could not exist without massive amounts of dependable electricity for its airline manufacturing.

Boeing’s flight line at Everett’s Paine Field.

The Senate’s Commerce, Subcommittee on Technology, Innovation and Competitiveness, has few Senators capable of engaging computer industry experts as Senator Cantwell demonstrated, with her IT background.  During hearings on High–Performance Computing Vital to America’s Competitiveness, Cantwell was able to facilitate important questions on supercomputing architecture and applications. The Senator also had the opportunity to introduce two industry witnesses from the Washington State, who gave examples of how these technologies were advancing research & development to support manufacturing.

High-performance computing are the latest concepts for maximizing the power of supercomputers and networks for advance scientific research and it’s rapidly being embraced by a variety of key industry sectors. These powerful computer systems reach trillions of calculations per second, enabling discoveries not possible with standard computers. High-level computers are now used in a number of applications such as: accurately forecasting weather fronts, DNA modeling and  National Security.

 Internet2, which is a next-generation Internet Protocol and optical network, has the bandwidth performance needed for transferring high-volumes of  data produced by supercomputers.  A new national network, Level 3 Communications can now transfer 100 Gbit/s, which is a 100-percent improvement over Internet2. These high-speed secure networks are primarily used by academic and medical research for universities, in many cases the collaborative R&D will eventually  find an industry application.

At the Senate’s subcommittee, witness, Michael Garret, Director, Airplane Performance for the  Commercial Airplane Division of the Boeing Company, described to Cantwell and the other Senators how high-performance computing dramatically changed Boeing’s aerospace design process. In one example, Garret shared how Boeing had saved 80-percent, in the number of wing designs for the new, 787 Dreamliner.

Boeing 787-Dreamliner preparing for its first “maiden flight,” at Paine Field, Everett Washington.

If our intention for the Nation is to remain a leader in science, technology and commerce, we need more representatives in the Senate,  such as Senator Cantwell.  Our national elected representatives must understand the current and future potential of these advanced computer systems—to keep America technologically, economically, and militarily viable.  Fortunately, we and our  Nation’s Senate have Cantwell to help enable critical question on how to retain our leadership through high-performance computing and a new spectrum of technologies. ~

Senator Cantwell at one of her fundraiser, sharing her views on technology and education.

It’s important I share with you that Maria Cantwell and I have been friends for many years.  She hired me to photograph her when she first ran for congress and generously credits my photography for helping her get elected.  When she latter became an IT executive, she again hired my multimedia services to help promote and market Real Networks in Seattle. I’ve included some photos of Ms. Cantwell at a May fundraising event with campaign supporters and close friends.

Ms. Cantwell being introduced by Jim Johanson at a fundraising event in Edmonds, Washington.

Senator Cantwell has agreed to answer a series of interview questions from me, on science and technology related issues. The format for the interviews has yet to be confirmed, but there will be at least a text version and possibly, a  video one as well on the ScienceTechTablet and BigPictureOne multimedia sites. The interviews will take place sometime over this summer. One of my questions will be related to a photo-essay I wrote this year on the current Solar Storm cycle, which will be peaking by 2013.  Specifically. her views will be asked of how ready we are—in comparison to the 1989 Solar Storm, which caused Hydro-Quebec’s power grid to crash and leave millions of its customers with no electricity.

I mentioned to  Cantell that the Science Technology Engineering & Math (STEM) Advisory for Edmonds School District, which I volunteer as a committee members, will launch a STEM Magnet school at Mountlake Terrace High School for 2012 -2013. The Senator was very enthusiastic with the news, as she is a big supporter of the education program. MLTH was also in her former district when she was a state representative, living in Mountlake Terrace. Questions on how we can attract and support more programs, such as STEM, will be on the interview list.

If you have a science or technology question which relates to the United States for Senator Cantwell, please write it down in the response section bellow this story or email me with your interview question. I will do my best to ask your questions with the time available for the interviews.

A gathering of friends and supporters with Senator Cantwell. From left to right: Jim Johanson. Patrick MacDonald – former Seattle Times music critic, Maria Cantwell, Carmen lisa Valencia, David A. Johanson

The World Event Which launched Seattle into a Postmodern Orbit, 50 Years Ago Today.

22 Apr

Seattle panorama with Space Needle in foreground and Mt Rainier in background.

Multimedia eLearning essay by: David Johanson Vasquez © All Rights – Third Edition    

Content includes: Blended learning, critical think, Seattle Postmodern History, (Video Links – MGM film segments with Elvis Presley at Seattle’s World Fair, postmodern video of early NASA rocket launches & spacewalks, video defining “postmodernism”)  (Web links, history org feature of Century 21 Seattle’s World’s Fair & Architect Japanese American Minoru Yamasaki)

Century 21 World’s Fair logo.

On this day, April 21st, 1962, Seattle’s Century 21 World’s Fair opened the doors for its national and international visitors.  Eventually, almost 10 million guests would attend the entire event to—imagine a futuristic tomorrow, which promised technological wonders for improved living and for promoting world harmony.

In the previous century’s, 1851 London World’s Fair, taking place at the Crystal Palace, it was a first of its kind event . The industrial age was in a mature stage of  development, offering new forms of emerging technologies.  In this era, people became aware of time speeding-up, caused by steam-powered’s ability to hasten the speed of long-distance travel with locomotives and steamships.  The dimensions of  time and space were being reduced by these transportation developments… which brought distant nations and cultures together, allowing for— the creation of World’s fairs for promoting industrial development and international exhibits.  Seattle’s first World’s fair, the  Alaska Yukon Pacific Exposition, in 1909, took place near the peak of the modern industrial age.

The Space Needle, an iconic landmark from Seattle’s 1962 Century 21 Worlds Fair.

Significantly, the Century 21 World’s Fair was successful with a number of tangible results— it was one of the few world’s fairs, which made a profit and most importantly, it lifted Seattle out of its perceived provincial setting, while placing it on a world stage.  The timing was ideal for the city’s economic and development trajectory.  With Boeing Aerospace as a prime Seattle-based company, it benefited from the international exposure, right when the postmodern world began embracing jet travel for enhanced global access.

Aerial view of Seattle Center, part of the original site: Century 21 World’s Fair.

Optimism and enthusiasm associated with the 1962 Worlds Fair was authentic, however, in the big picture, a dark shadow was growing in super-power tension as the cold war thermometer was reaching a boiling point.  President Kennedy’s excuse of having a cold for not attending the Century 21 closing ceremony in October was a ruse, actually his efforts for de-escalating the Cuban Missile Crisis were urgently required.  As a result of averting a nuclear war over Cuba, President Kennedy successfully presided over the United States, United Kingdom and Soviet Union’s signing the Comprehensive Nuclear Test Ban Treaty (CTBT) in the following year of 1963.

Ironically, it was the Soviet Union, which created the theme of “science” for Seattle’s Century 21 Worlds Fair.  On October 4, 1957 the Russians launched Sputnik, the first orbiting satellite, which gave them an edge in space development.  With the Soviet’s apparent satellite success, Americans feared they were falling behind in science and technology; as a result, the theme of “science” became the framework for Seattle’s Worlds Fair.  From this time forward, the U.S. set goals to be leaders in space exploration and development.

The shock-wave effect created by Sputnik, awoke America from its idealistic  complacency of the 1950’s.  Now a sense of urgency was created in looking for optimism within future technology of tomorrow.  This quest for all things technological— was the fuel which Seattle used for launching its World’s Fair.  Late in 1957, the title: Seattle Century 21 World’s Fair was selected as the brand name—to help promote America’s vision of optimism for a technological future.  To champion this cause, Albert Rossellini, Washington State Governor from 1956 to 1965— selected an exceptional group of business and civic leaders for a commission, which successfully acquired  financing for the World’s Fair.

Governor Albert Rossellini on Veteran’s Day 1961.

Governor Rossellini, a Pacific Northwest civic titan, had a vision, which helped develop the region into a world-class economic dynamo.  The World’s Fair, along with a modern transportation infrastructure, and post secondary education developments are just a few examples of the legacy Rossellini created.  One more fascinating contribution from Governor Rossellini was his success at bringing the of “King of Rock and Roll” to Seattle’s World Fair.

Albert Rossellini  pitched the idea to MGM, for making a movie with Elvis Presley (click on the video link →)  It Happened at the World’s Fair — (Movie Clip) Happy Ending  Enlisting Elvis, a mega superstar, to help promote the Fair in a movie was a brilliant marketing move, with true creative vision!

Most impressive icons of the Century 21 Fair are the Space Needle and Monorail, both went on to become revered Seattle landmarks and preferred  tourist attractions. Internationally, the Space Needle is more recognizable as a reference to Seattle, than the city’s actual spoken name.

The ever-popular Seattle Monorail glides into view.

Low angle view of a futuristic Space Needle.

The Inspiration for the “Space Tower” as it was initially called, came from a napkin sketch by C21 chairman, Eddie Carlson.  The chairman was motivated by his visit to a 400’ TV tower, complete with an observation deck and restaurant in Stuttgart, Germany.  The idea of a tower with a “flying-saucer” shaped restaurant at the top, was presented to architect John Graham, who added the concept of a rotating restaurant to allow viewers a continuous change of panoramic views.  Victor Steinbrueck, professor of architecture at the University of Washington and architect John Ridley produced concept sketches which featured an elegant tripod, crowned with a saucer structure, observation deck.

Minoru Yamasaki, a first-generation, Japanese American, born in Seattle, was the lead architect— along with Seattle’s NBBJ Architects chosen for designing the U.S. Science Pavilion, today’s Pacific Science Center.

Originally titled the U.S. Science Center, now the Pacific Science Center, was designed by architect Minoru Yamasaki, using his “Gothic Modernism” style.

Yamasaki’s innovative, graceful style was also used in Seattle’s most daring piece of architecture, the Rainier Tower— supported by a gravity defying inverted pedestal!

Yamasaki’s dynamic Rainier Tower architectural design in Seattle.

Another of Minoru’s Emerald City designs is the IBM Building, used as a model for the New York City twin tower design (destroyed in the 9/11, 2001 terrorist attacks.)

Seattle IBM Building designed by Minoru Yamasaki, was used as the model for NYC WTC Twin Towers. An example of Yamasaki’s “gothic modernism” style.

The Pacific Science and NYC twin towers architectural style is gothic modernism, which is a signature feature found in most of Minoru’s designs (please see examples of gothic modernism elements in the photographs below.)

Yamasaki’s iconic Twin Towers, Once part of NYC World Trade Center.

NYC Twin Towers designed by Minoru Yamasaki.

The futuristic Century 21 Monorail, gracefully gliding above the busy streets of Seattle. One of the City’s most popular tourist attractions.

During the summer of the World’s Fair opening,  my parents took me to experience the exposition. Although I was very young while attending, the images and feelings of wonder from seeing the futuristic architecture and exhibits are still with me.  The theme of life in the 21st century, awoke my imagination and interest in science technology at an early age, which still continues to this day. ~

Twilight view of Seattle Space Needle and Pacific Science Center.

A must see postmodern era video featuring the beginnings of the space race. Click on link below. ↓

http://www.youtube.com/watch?v=rfVfRWv7igg

What is postmodernism video (click on video link below ↓)

http://www.youtube.com/watch?v=oL8MhYq9owo

HistoryLink to Century 21 — The 1962 Seattle World’s Fair, Part 1 ( Click on link below ↓)

http://www.historylink.org/index.cfm?DisplayPage=output.cfm&File_Id=2290

Links to Seattle Architect Minoru Yamasaki ↓

http://en.wikipedia.org/wiki/Minoru_Yamasaki

http://www.time.com/time/covers/0,16641,19630118,00.html 

What can be more important than reaching for excellence in education, still not sure? Read what one of the greatest storytellers of our time is saying about the importance of education. Iconic filmmaker, George Lucas is true to his word regarding support for education. Please read what he wrote this week in his Eductopia.org. Site, regarding the importance of teaching. My written response to Mr. Lucas’s article is how I use web-based multimedia experiences to share passion for learning. I wonder if GL took a look at what I had to say?

http://www.edutopia.org/blog/importance-of-education-george-lucas

http://www.edutopia.org/blog/importance-of-education-george-lucas

www.edutopia.org

[contact-form] [contact-field label="Name" type="name" required="true"/] [contact-field label="Email" type="email" required="true"/] [contact-field label="Website" type="url"/] [contact-field label="Comment" class="GINGER_SOFATWARE_noSuggestion GINGER_SOFATWARE_correct">textarea</span>" required="true"/] [/contact-form]

Boeing’s 787 Dreamliner Historic First Flight From Paine Field, Everett, WA.

10 Apr

Multimedia essay by: David Johanson Vasquez © All Rights

My video camera kit had been prepared months in advance, ready in a moment’s notice for the first maiden flight of Boeing’s 787 Dreamliner—21st Century entry airliner.  Finally, Dave Waggoner, the director of Paine Field Airport, queued me into the date to witness an evolutionary advance in commercial aviation.

Cameras Packed And Ready To Go

My home is only a short drive from Boeing’s production facilities at Paine Field, Everett; so I was motivated to video record this “making of 21st century aviation history.”  Due to initial production delays, an entire year went by before I received reliable news of the 787-8 wide-body, long-range airliner was ready for her much-anticipated maiden flight. The 787 Dreamliner’s first flight was at 10:27 a.m. PST, December 15, 2009.

Experienced As A Boeing Scientific Photographer

The 787 first flight ,video project brought back some great memories from my former career as an aerospace photographer with the Boeing Company.  When first hired on by the iconic, aviation leader, my assignment involved providing video support for the Everett plant’s test engineering groups, who were conducting bulkhead fatigue test on airline fuselages.  In preceding years, some airlines began experiencing  inflight catastrophic failures related to metal fatigue. Tragically  the determined cause was from the age of the aircraft, specifically, stresses created when interior cabins went through an excessive number of pressurization cycles.

An event in the 1980s, of a Boeing 737 was dramatically documented as it safely landed with a massive section of the fuselage missing. The Aloha Airlines, 737 jetliner experienced a catastrophic failure due to metal fatigue. The metal fatigue issues caused from pressurization cycles on aircraft were not clearly understood, so the FAA required engineering test to research the potential safety threat.  

A series of highly documented Test were conducted over a period of months; going through thousands of pressurized cycles.  The purpose was to recreate what a jet airliner physically experiences when the cabin is repeatedly pressured and unpressurized — as in every-time an airliner takes-off, gains altitude and eventually returns for its landing. Our team of scientific photographers had series of video cameras, strategically placed within the test bulkhead, which sat shrouded inside layers of protective coatings, in a remote section of the Everett facilities. Over-pressurizing the bulkhead eventually caused the anticipated failure, announced  by a thunderous sound of cracking metal. The  bulkhead  test was well documented using various engineering test methods and imaging equipment. Valuable test data gathered was immediately analyzed, studied and put to methodical use for redesigning, engineering and manufacturing safer jet airlines.

Examining a fuselage section of the 787 which uses composite carbon fiber materials.

Boeing’s Traditional Practice Of Over-Engineering

It’s been my experience, which confirms for me, what commercial pilots and engineers claim regarding Boeing’s reputation with its conservative practice of “over-engineering” their aircraft.  Historically, an over-engineering approach has proven itself as a life saving benefit — with countless Boeing aircraft surviving horrific damage… yet, still landing safely. Documentaries on WWII aircraft feature  shot-up Boeing aircraft returning safely, is an example of over-engineering. 

For teams performing test  monitoring, with elaborate configured structures,  attached string gauges and actuators trying to force a break of an airplane part — the aerospace test may go on for days, or even months — the experience feels like sitting in bleachers for hours while watching slow-motion glacier races in progress.  All the invested resources of  time and effort, which goes into these aerospace component test,  helps to assure the flying public’s safety and the airlines performance records.

Engineers enjoy seeing how much torturous abuse their designed support systems will take before they bend, crack or break.  At the instant  a component does finally fail [normally after  far exceeding the range of what it was designed to do] you’ll hear a loud noise caused from a test-object going beyond its limit. The sound of the breaking part, ends the tension of monitoring a test for hours or days — in an instant, the team of test engineers and technicians start cheering like a goal was scored by a home team in a stadium full of their fans.

Boeing 787-8 Dreamliner taxiing for its historic, maiden flight on December 15, 2009 from Paine Field Airport, Everett, WA.

Carbon Fiber Future In Aviation

One of many significant technological improvements for the new long-range, wide-body 787 Dreamliner, is a high percentage of composite, carbon fiber materials used in its construction. The amount of composite, materials employed in today’s aircraft have substantially increased from when it was initially developed  and used in military aircraft.  I recall, how amazingly light wing spares made of carbon fiber composite materials are, when moving them under lighting setups at Boeing’s Gateway studio.  It was fascinating observing and photographing the manufacturing of composite materials, as the process involves using massive heated autoclaves to form predesigned sections for aircraft structures.

Now, remember the bulkhead test from a previous paragraph?  Carbon fiber composites eliminates the issue of metal fatigue associated with pressurizing  passenger cabin space.  Less concerns over metal fatigue allows for more pressurization  in the cabin for passenger comfort  — more importantly, the  integrated use of composite materials ensures greater safety, with substantially less risk to the structural integrity of the airliner.

Is Boeing’s Reliance On Outsourcing The Main Culprit For The 787 Dreamliner Being Grounded In A Global Lockdown?

In the past 15 years, Boeing’s upper management has broke formation from its traditional engineering leadership and replaced it by promoting executives with business and marketing backgrounds. The current Boeing regime embraces an outsourcing strategy, unfortunately, this trend of maximizing profits for shareholders has been on going with U.S. companies for the past two decades. Negative consequences of replacing an engineering management with a business one is clearly apparent in the power transmission industry — deregulation & marketing-driven-management  in the electric power industry has significantly placed this essential infrastructure at risk [overstretched power grid, vulnerable outdated high-power transformers.] Please see my multimedia essay – Will the Last People Remaining In America, Turn the Lights Back On? : https://sciencetechtablet.wordpress.com/tag/solar-storm-testimony-to-u-s-senate/    Money_int _BPP_a223

A heavy dependence  on  foreign outsourcing is sighted as a cause for unforeseen 787 production delays. Consistent, quality control monitoring becomes problematic when components are manufactured offsite, as result these issues can sometimes lead to extended,  unanticipated problems.

photo illustration Outside vendors are capable of producing equal, if not superior quality components to that of Boeing in some technical areas. In fact, there are legions of aerospace companies in the Puget Sound region, which supply critical parts to the 787 Dreamliner’s manufacturer. Some outsourcing is absolutely necessary for Boeing to compete with Airbus. The concern is outsourcing critical components in a new airplane program, which is attempting to use technology never used in a commercial airliner. It’s ironic, li-ion batteries are at the center of the 787’s grounding — lithium batteries have been a concern for over a decade to the FAA, TSA & NTSB, even leading to bans & restrictions for passenger’s to bring on commercial flights. It’s almost hubris or a form of high-risk gambling, to “initially” rely so heavily on outside vendors [GS Yuasa, the Japanese firm making the li-ion & Thales, the French corporation making the batteries’ control systems] for producing an unproven, prototype system.  L PI CRTBD BPP et99

While working as a Boeing employee in the 1990s, I recall an incident with a vendor supplying thousands of counterfeit aircraft quality fasteners made in China. Fortunately, the fiasco was caught early — but not before many hours and dollars were lost, going back to inspect wings on the production line, to remove & replace the defective fasteners. photo illustration

Unless solid metrics are emplace to assure critical standards are met for each component, it’s only a matter of time before a failure will occur. Boeing has traditionally been an aerospace company, which “over engineers” it airplanes & errors on the side of safety. Hopefully the company has maintained & continues to practice these quality assurances

Outsourcing is practical both economically and politically for companies with international sells. It’s a successful strategy Boeing has used for many years; outsourcing has proven to provide incentives for foreign airline companies to buy Boeing aircraft, in order to support their own domestic aerospace industries.     World_box_BPP_et424

The American auto manufacture Tesla, had similar “thermal runaway” issues when first using li-ion batteries to power its Roadster. Tesla Motors, benefited from its learning curve by switching to Lithium Iron Phosphate batteries, which run at cooler temperatures. The innovative auto manufacture also developed its own battery pack architecture, with proprietary liquid cooling system packs — for controlling battery cell temperatures within self-contained, metal lined enclosures.  The nontoxic, Tesla battery packs are manufactured domestically in Northern California. Perhaps Boeing should be considering manufacturing all critical systems in-house and domestically as Tesla has done.

Boeing 747 at Everett manufacturing facilities.

Boeing 747 at Everett manufacturing facilities.


L TEC ELMICROS BPP et211

Again, it’s to early to know the exact extent of the problem  with the 787’s battery systems. There’s no doubt, the issues will be isolated and corrected, as  Boeing has long history of thoroughly testing and over-engineering its aircraft systems. One thing is certain, it’s rare for Boeing to experience a new aircraft being grounded simultaneously by  Japan’s transport ministry and by the FAA.

Ultimately,  A Bright Future Awaits The 787 Dreamliner

Gaining profitable fuel savings by developing a lighter, wide-body aircraft, combined with the fuel-efficient, GE or Rolls Royce engines, produces a major advance for airliner capabilities.  The tangible benefits in comfort, interior lighting and convenience  contribute to a remarkable passenger experience.  All the evolutionary, technical advances in the Boeing 787 Dreamliner, creates a remarkable new development  for commercial aviation. ~

Future of Flight Museum - Mount Rainier & Paine Field in background Everett, WA

Future of Flight Museum –
Mount Rainier & Paine Field in background Everett, WA

 

 

Boeing 787 Dreamliner Maiden Flight – December 15, 2009 – Paine Field, Everett, WA.  Video by: David Johanson Vasquez © All Rights Reserved

The Unworldly Splendor of Oregon’s Painted Hills.

3 Apr

Photo/video and text by: David Johanson Vasquez © All Rights

The sun had just set as I arrived at my friend’s condominium on Lake Washington near Seattle.  Rick was loading camera equipment into his SUV Ford Escape, which is a gasoline-electric hybrid and incidentally one of the first American-built hybrids.

We had a long drive ahead of us and we’d be traveling all night until reaching our destination in the high desert of Central Oregon.  It was a cool, but clear, May evening, as the SUV climbed steadily up Snoqualmie pass; taking us over the Cascade Mountains and  into dryer Eastern Washington.  After a few hours of driving the glow from a near full moon was illuminating the desert sagebrush outside the town of Goldendale on the Columbia River.

Wind turbines above the Columbia River are lit by the moon.

Our adventure to John Day Fossil Beds National Monument, was planed  to coincide with a full moon to illuminate the surreal Painted Hills within the Monument.  Rick and I use digital cameras, featuring full-sized imaging sensors and fast optical lenses, which are ideal for capturing in lowlight environments.  Taking the opportunity to harness some moonlight as it rose above the Columbia Gorge, we made a stop to photograph wind turbines, which populate this section of Washington and Oregon.  The site is ideal for wind farms due to the wind tunnel conditions created by compressed airstreams forcefully moving through the constricted Gorge.   

Standing next to a colossal tower is a strange experience.  These wind catchers are the largest machines you’ll probably encounter on land and the eerie sounds produced from the massive propeller blades takes some getting use to.

Driving on the Washington side of the Columbia River and into Oregon you see legions of wind turbine sentinels, as they constantly harvest the restless winds.  It takes an hour of driving south on the highway before we no longer have towers flanking our drive. What I’m surprised not to see are other cars traveling in either direction on the highway.  The vast size of Eastern Oregon is not appreciated unless you spend some time touring in its’ large, unpopulated counties.

After traveling all night and encountering some falling snow as the hybrid SUV started ascending the road to the high desert—we finally entered into the realm of the primeval Painted Hills.  It’s totally dark now that the moon set hours earlier, so we pull into a remote area to catch a couple of hours of sleep before our video and photography expedition begins.  The John Day Fossil Bed National Monument is organized into three Units; the Painted Hills is the third Unit, which contains 3,132 acres of wildlife, plants and some unusual geology.

Over millions of years, layers of ash from nearby volcanic eruptions mixed with clay through the process of erosion to cause intense patterns of color.

The following morning was a like waking up in some eye-candy dreamland.  The colors just popped out of the scene like a TV monitor, which had been over adjusted with the saturation turned way up.  Stunned by the startling beauty, I grabbed my video camera on a tripod and began shooting panorama footage.  Ready for capturing the details of the environment; an external microphone was used to record the outburst of chattering songbirds, which had woken up to herald the beginning of a new day.  My first impression was an experience of sensory overload; it was  challenging to take in all the colors, sounds and surreal shapes of the textured topography.  What I was seeing, appeared to be out of this world —like viewing some futuristic post cards of a terraformed  Martian landscape.

What I remembered from earlier road trips to Southwest was how striking the Painted Desert in Arizona appeared but that now seemed pale in comparison to the Painted Hills.  What makes the  geology at this site so vivid with saturated color was caused by a series of volcanic  eruptions, occurring over millions of years.  The accumulation of bright  layers of ash, dust and clay mixed together from relentless years of erosion — forming intense, saturated strata of colors, layered into the hills.

What remains buried beneath the volcanic soil is a time-capsule, of preserved fossil remains from mammals and plants, which thrived  during the  Cenozoic Era – the Age of Mammal [roughly 65 million years ago.] This National Monument is a target rich environment for paleontologist studying fossils from this time period.

After I shot about an hours worth of video from the spot we had park at from the night before, it was time to scout other dramatic locations.  Not too far into our drive we spotted a family of graceful antelope, casually grazing in a large field.  Apparently, from talking with one of the NPS Rangers, this National Monument is full of indigenous wildlife including: bears, cougars and eagles.

Latter in the afternoon we stopped at the side of a gravel road to take in a stunning view of  one of the larger hills at the site.  The clouds above were opening and closing like a massive shutter on a spotlight; producing lighting effects which were irresistible.  We set up tripods along with our video and still cameras to begin shooting right away.  Shortly after, a ranger  pulled up close to the SUV and was intently watching us. Rick and I looked at each other with a shrug, thinking perhaps we had unknowingly parked in a restricted area. Eventually the ranger introduced himself, he had the impression we were part of a National Park Service video crew, which was schedule to be doing work at the Monument.  The ranger was there to lead a group of photographers into a restricted area for a guided tour, so he invited us to join in.  As it turned out, this special photography tour only takes place one weekend out of the entire year —when the John Day chaenactus (a bright yellow wild flower) begins to bloom; then as quickly as it appears—it begins to fade away.

The photographer’s tour was visually fantastic and can only be experienced under the supervision of an NPS Ranger.  The plant life is so fragile here, you’re only allowed to  walk inside a dried out creek bed while touring this area.  The Ranger was gracious enough to allow me to interview him about the site.  Wind is common and unpredictable in this high desert area, so I came prepared with a wind guard on my microphone; but I did experience a few audio dropouts,  hopefully you’ll able to hear the main message clearly enough.

http://www.youtube.com/watch?v=LMno4hbg-ZA

Later that evening we photographed the landscapes using a full moon for our lighting. I’ve never seen greater clarity of the stars and moon from this high desert environment, which created a great backdrop for an unearthly landscape. We photographed throughout the night until the light of predawn appeared.

At a little over 2,000 feet in elevation, the high desert can produce cold, bone-chilling weather and as mentioned—windy conditions.  I recommend warm clothing and gloves to help keep your hands comfortable from wind-chill.  For photography, the higher altitude is a great benefit, especially for optical clarity if your focus is on night photography of stars and landscapes.

I definitely plan to go back to the Painted Hills as soon as possible… it’s a dreamlike setting I have rarely experienced, which captivates the senses, with its splendor of stunning colors contained within an unworldly environment. ~

LINKS:

Here’s a link to National Park Service’s John Day Fossil Bed National Monument:   http://www.nps.gov/joda/index.htm